Shock settico: vasocostrittori o fluidi?

15 dic 2013

Oggi parliamo di emodinamica. Anche se la ventilazione meccanica è il principale argomento di ventilab.it, ogni tanto guardiamo anche nel campo vicino dell'emodinamica, sia per le strette relazioni che esistono tra emodinamica e ventilazione meccanica, sia per l'interesse ripetutamente manifestato per queste digressioni da parte della tribù di ventilab.it (un grazie ai 7331 visitatori unici degli ultimi 30 giorni).

Vorrei condividere l'esperienza di Pierina, una donna di circa 70 anni con uno shock settico da candidemia. Ricordiamo che lo shock settico è definito da tre elementi: 1) la presenza di un'infezione a cui si associa 2) un'ipotensione arteriosa che deve essere trattata con 3) vasocostrittori anche dopo un'appropriata somministrazione di fluidi. Nella nostra Pierina la sepsi ha scatenato un'insufficienza multiorgano in piena regola: ARDS, insufficienza renale, encefalopatia, disfunzione epatica e piastrinopenia.

Una notte il medico di guardia riceve in consegna Pierina con l'infusione di noradrenalina (o norepinefrina come sarebbe più corretto dire) a 0.9 mcg.kg-1.min-1 e dignitosi valori di pressione arteriosa (circa 70 mmHg di pressione arteriosa media). Il medico di guardia decide di valutare se la somministrazione di fluidi può essere efficace nel ridurre la dose di noradrenalina, ovviamente continuando a mantenere sufficienti valori di pressione arteriosa. Pertanto nel corso della notte esegue una serie di espansioni volemiche, dopo ciascuna delle quali riesce a diminuire il dosaggio di noradrenalina, mantenendo stabile la pressione arteriosa. Alla fine del turno, dopo una notte dedicata alla cura di Rosa, il dosaggio della noradrenalina è passato da 0.9 a 0.4  mcg.kg-1.min-1 ed il medico è molto soddisfatto del risultato del proprio impegno notturno.

Fino a questo punto della storia, sei d'accordo con la soddisfazione del medico di guardia?

Però...(ovviamente c'è un "però") Pierina aveva anche un catetere arterioso polmonare (il caro, vecchio catetere di Swan-Ganz) e l'ultima misurazione dell'indice cardiaco (prima delle espansioni volemiche) dava un valore di 4.3 l.min-1.m-2. Un "dettaglio" trascurato dal medico di guardia, che ha gestito Pierina come se non avesse a disposizione la misurazione della portata cardiaca. Il caso è interessante perchè il nostro medico ha fatto quello che normalmente viene fatto quando non si ha a disposizione il monitoraggio della portata cardiaca.

Prima di rivedere criticamente la gestione di Pierina, richiamiamo alcune considerazioni su ritorno venoso e portata cardiaca.
Espansione volemica, ritorno venoso e portata cardiaca.

Quando infondiamo fluidi, aumentiamo il volume intravascolare ed in particolare il volume del distretto venoso (che è molto più ampio e compliante di quello arterioso).

L'aumento di volume nei vasi venosi postcapillari genera ovviamente un aumento della pressione venosa postcapillare, che assimiliamo alla pressione sistemica media (vedi post del 30 aprile 2013). La pressione sistemica media è la forza che "spinge" il ritorno venoso verso l'atrio destro: più aumenta, più aumenta il ritorno venoso.



Oltre ad incrementare il ritorno venoso, l'aumento della pressione sistemica media produce edema tissutale. Infatti la pressione sistemica media è la pressione che troviamo alla fine del circolo capillare ed il suo aumento inevitabilmente induce un incremento delle pressioni capillari e quindi la formazione di edema (come previsto dall'equazione di Starling quando vi è un aumento della pressione idrostatica interna al capillare). Questo nel caso di individui che, al momento della somministrazione di fluidi, partano da normali valori di pressione sistemica media; ovviamente nei casi di bassa pressione venosa postcapillare (disidratazione, emorragia acuta) la somministrazione di fluidi prima ripristinerà una condizionedi normalità e l'edema inizierà solo dopo il superamento delle pressioni fisiologiche.


Conclusione 1: l'espansione volemica ha due effetti diretti ed immediati: aumento del ritorno venoso ed edema tissutale. Nessuno di questi due effetti, di per se, è utile al paziente.


Un vantaggio potenziale per il paziente potrebbe esserci  se entrambe le pompe cardiache (cioè sia il ventricolo destro che il ventricolo sinistro) sono poi in grado di trasformare l'aumento del ritorno venoso in aumento di portata cardiaca. Ecco i due possibili scenari:


1. il cuore riesce a “smaltire” il maggior flusso in arrivo aumentando la portata cardiaca (cioè il flusso in uscita). Perchè questo accada entrambi i ventricoli devono essere sono "virtuosi". Il ventricolo destro, più precaricato, riesce ad aumentare la gittata sistolica (stroke volume). L'aumento della portata cardiaca destra (nella circolazione polmonare) aumenta il ritorno venoso al ventricolo sinistro che a sua volta trasforma l'aumento del proprio precarico in aumento di stroke volume sinistro. L'effetto finale è l'aumento della portata cardiaca sistemica.


2. il cuore non riesce a “smaltire” l'aumento del ritorno venoso: l'aumento di precarico (cioè del volume del ventricolo alla fine della diastole) non è in grado di aumentare lo stroke volume ed il maggior ritorno venoso si traduce quindi nella dilatazione delle strutture vascolari a monte del ventricolo e nell'aumento delle pressioni al loro interno. Se il ventricolo che fallisce è il destro, possiamo quindi misurare un aumento della pressione venosa centrale. Se invece il fallimento è dovuto al ventricolo sinistro, possiamo misurare un aumento della pressione di incuneamento dell'arteria polmonare (pulmonary capillary wedge pressure) con congestione del circolo polmonare fino all'edema polmonare.


Conclusione 2: solo alcuni pazienti che ricevono liquidi (circa il 50%) (1-2) sono in grado di aumentare la portata cardiaca dopo l'espansione volemica. Negli altri, cioè in circa la metà dei nostri pazienti, la somministrazione di fluidi servirà esclusivamente ad aumentare il livello di edema periferico o polmonare.


Facciamoci ora una domanda fondamentale: l'aumento della portata cardiaca è un obiettivo auspicabile nel trattamento del paziente con shock?


Si considera come normale un indice cardiaco tra 2.5 e 3.5 l.min-1.m-2. Gli studi sui pazienti critici (diverso è il discorso per i pazienti sottoposti a chirurgia) hanno dimostrato che non vi è nessun vantaggio ad aumentare l'indice cardiaco oltre questi valori (3,4).


Ecco perchè non possiamo condividere la somministrazione di fluidi per ridurre la noradrenalina nella nostra Pierina. Che senso ha dare un carico di fluidi ad una paziente con un indice cardiaco di 4.3 l.min-1.m-2Che senso ha somministrare fluidi ad un paziente ipoteso (o normoteso con vasocostrittore) se la portata cardiaca è normale o elevata? Abbiamo appena visto che l'unico possibile effetto positivo dell'espansione volemica potrebbe essere l'aumento della portata cardiaca: se non ci serve aumentarla, a che scopo fare i liquidi? Il risultato saranno solo più edema e bilanci idrici positivi, che come è ben noto si associano ad un incremento della mortalità (5-8).

Conclusione 3: nei pazienti con portata cardiaca normale o elevata, per trattare l'ipotensione bisogna utilizzare i vasocostrittori e non i fluidi.


E come facciamo a sapere se un paziente ha la portata cardiaca alta o bassa? Quando salire con la noradrenalina a dosaggi elevati in sicurezza? La risposta è una sola: dobbiamo misurare la portata cardiaca. E mi sento tranquillo nello scrivere che non è assolutamente vero (come talvolta mi capita di sentire dire) che vi siano evidenze che monitoraggio emodinamico e supporto di circolo mirato siano inefficaci o dannosi nei pazienti shockati con necessità di farmaci vasoattivi. Quello che la letteratura invece supporta è che non possiamo certo pensare di affidare le nostre decisioni sulla gestione emodinamica alla valutazione di pressione arteriosapressione venosa centrale (9,10).


Conclusione 4: nel paziente con shock che richiede dosaggi elevati di vasocostrittore o frequenti espansioni volemiche, bisogna necessariamente pensare di misurare la portata cardiaca per orientare il supporto di circolo in maniera mirata.


Torniamo alla signora Pierina. Penso che quella notte sarebbe stato meglio mantenere elevato il dosaggio di noradrenalina ed evitare le espansioni volemiche. Da allora Pierina ha iniziato una abbondante rimozione di fluidi prima con la CVVH e quindi, una volta ripresa la diuresi, coi diuretici, arrivando a perdere oltre 15 kg di peso. A distanza di circa 20 giorni Pierina non ha segni di infezione, è normotesa senza farmaci vasoattivi, è ben vigile, è svezzata dalla ventilazione, ha meno di 2 mg/dL di creatinina (senza CVVH) e sta aspettando il trasferimento in riabilitazione.


Un sorriso a tutti gli amici di ventilab, con l'augurio di riscoprire l'emodinamica: un'arma in più nel nostro repertorio.


 
PS: Non ho volutamente analizzato altri aspetti emodinamici (wedge pressure, PVC, PPV, SVV e compagnia bella) perchè penso che nel caso presentato non avrebbero influenzato le scelte terapeutiche. Ne possiamo eventualmente discutere nei commenti.

Bibliografia
1) Cecconi M et al. Changes in the mean systemic filling pressure during a fluid challenge in postsurgical intensive care patients. Intensive Care Med 2013; 39:1299-1305
2) Marik PE et al. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: A systematic review of the literature. Crit Care Med 2009; 37:2642–2647
3) Gattinoni L et al. A trial of goal-oriented hemodynamic therapy in critically ill patients. N Engl J Med 1995; 333:1025-32
4) Alía I et al. A randomized and controlled trial of the effect of treatment aimed at maximizing oxygen delivery in patients with severe sepsis or septic shock. Chest 1999; 115:453-61
5) Micek ST et al. Fluid balance and cardiac function in septic shock as predictors of hospital mortality Critical Care 2013; 17:R246
6) Sakr Y et al. High tidal volume and positive fluid balance are associated with worse outcome in acute lung injury. Chest 2005; 128:3098-108
7) Upadya A et al. Fluid balance and weaning outcomes. Intensive Care Med 2005; 31:1643-7
8) Wiedemann HP et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 2006; 354:2564-75
9) Pierrakos C et al. Can changes in arterial pressure be used to detect changes in cardiac index during fluid challenge in patients with septic shock? Intensive Care Med 2012; 38:422-8
10) Marik PE et al. Does central venous pressure predict fluid responsiveness? Chest 2008;134;172-8


Riproduciamo qui i commenti CON IMMAGINI originariamente pubblicati su ventilab.org (per i commenti senza immagini, vedi la sezione commenti al termine del post):




Read more ...

Ventilazione protettiva e anestesia?

5 dic 2013


La ventilazione meccanica in anestesia è un argomento di crescente interesse. Michele Bertelli,  un anestesista rianimatore che lavora assieme a me, ci ha preparato un post su questo argomento. Un grazie a Michele per questo spunto che sarà certamente capace di farci riflettere (e forse di cambiare alcune consuetudini consolidate sulla ventilazione in anestesia).

_°_°_°_°_°_°_°_°_°_°_


Qualche giorno fa mi trovavo in sala operatoria di Chirurgia Generale, io e Roberta, un dottoressa al primo anno di specialità. Primo intervento della mattinata, un laparotomia per un intervento di resezione retto-colica.
La nostra paziente non prevede difficoltà pre-operatorie particolari: ipertesa, diabetica, buone condizioni generali. Posizioniamo un catetere peridurale ed iniziamo l’anestesia generale. Induzione, intubazione oro-tracheale senza problemi e Roberta mi chiede: “Come imposto il ventilatore?” “Fai come se io non ci fossi”.
La paziente pesa 74 kg ed è alta 158 cm. Il ventilatore viene impostato con ventilazione in volume controllato con un volume corrente di 500 ml per 14 atti /minuto, PEEP 0 cmH2O.
Abbiamo una buona saturazione periferica SpO2 99% con FIO2 60%, EtCO2 39-40 mmHg e pressioni di picco intorno a 30 cmH20.
L’intervento è cominciato, è prevista una durata superiore alle 2 ore, nessun problema di emodinamica, la paziente è in lieve Trendelenburg. Chiedo a Roberta il motivo delle impostazioni del ventilatore e iniziamo a discutere. Dal computer della sala operatoria apro la pagina di Ventilab e leggiamo insieme il post del 24 luglio 2010, commentiamo le opinioni PERSONALI di chi ha scritto e modifichiamo i parametri ventilatori:
Calcoliamo il peso ideale (post 18 dicembre 2011): donne = 45.5 + 0.91 x (altezza in cm – 152.4) = 45.5 + 0.91 x (158 – 152.4) = 50 kg. Impostiamo un volume corrente di 5-8 ml/kg di peso corporeo ideale, scegliamo arbitrariamente 7 ml/kg x 50 kg = 350 ml
La paziente non è obesa, quindi PEEP 5 cmH2O. Frequenza respiratoria iniziale di 18 atti/minuto con l’accortezza di non dimenticare EtCO2 e monitoraggio grafico del ventilatore.
Un rapporto inspirazione/espirazione (I:E) tale da garantire un tempo inspiratorio pari a 1 secondo.
Contenti? Io sì, Roberta un po’ meno (giustamente!!!) e ora lei chiede a me “Perché queste impostazioni ti piacciono?”. Esclusa la stima e la completa fiducia di chi ha scritto il post preso come esempio, non so dirle se effettivamente le impostazioni scelte (che sono valide per un paziente in ventilazione meccanica ricoverato in terapia intensiva) possano “far bene” anche alla nostra signora con l’addome aperto.

Oggi però posso tentare di dare una risposta: The New England Journal of Medicine (1) ha pubblicato in agosto un articolo che fa al caso nostro.

È uno studio multicentrico francese, condotto in doppio cieco, sono stati studiati 400 pazienti adulti sottoposti a intervento di chirurgia addominale (laparoscopica o no) della durata prevista maggiore di due ore.
I pazienti del gruppo di controllo sono stati ventilati in modalità volume controllato, con volume corrente di 10-12 ml/kg di peso corporeo ideale, con PEEP zero. I pazienti del gruppo di studio sono stati ventilati in modalità volume controllato, con volume corrente di 6-8 ml/kg di peso corporeo ideale, con PEEP 6-8 cmH2O e manovre di reclutamento (pressione continua di 30 cmH2O per 30 secondi applicata ogni 30 minuti).
In entrambi i gruppi si è stati attenti a non superare una pressione di plateau di 30 cmH2O (in media 15 cmH2O nel gruppo con basso volume corrente e PEEP e 16 cmH2O nel gruppo di controllo).
Nella valutazione dell’outcome primario, definito come insorgenza di complicanze polmonari maggiori (polmonite, insufficienza respiratoria con necessità di ventilazione artificiale) o extrapolmonari (sepsi, sepsi grave, shock settico, decesso) nella prima settimana postoperatoria, si è evidenziata una differenza significativa tra i due gruppi: 22 (10.5%) complicanze nel gruppo di pazienti ventilati con basso volume corrente e PEEP e 55 (27.5%) complicanze nel gruppo di controllo (rischio relativo 0.4, CI95% 0.24-0.68, p = 0.001). L’analisi degli outcome secondari ha mostrato una ridotta permanenza in ospedale nei pazienti ventilati con basso volume corrente e PEEP.

Lo studio dimostra come la ventilazione protettiva possa essere più vantaggiosa rispetto alla “ventilazione standard” anche in anestesia. Un’ipotesi (post 26 dicembre 2011) (2) è che questa modalità ventilatoria più “soft” riduca barotrauma (da elevate pressioni), volotrauma (da sovradistensione di aree), atelectrauma (da dereclutamento), biotrauma (danno strutturale da mediatori proinfiammatori locali) e forse anche microaspirazioni di contenuto gastrico (3).

Ogni anno nel mondo circa 230 milioni di pazienti vengono sottoposti a chirurgia addominale maggiore e ventilazione meccanica: le problematiche respiratorie sono seconde solo alla infezioni (4) tra le complicanze post-operatorie. L’anestesista può contribuire a ridurre le complicanze postoperatorie con una appropriata impostazione della ventilazione meccanica.

Conclusioni.

Possiamo concludere che in tutte le condizioni in cui impostiamo una ventilazione meccanica controllata in interventi di chirurgia addominale maggiore dovremmo:
1. stabilire un volume corrente di 6-8 ml/kg di peso corporeo ideale
2. impostare una PEEP di 6-8 cmH2O
3. valutare manovre di reclutamento (pressione continua di 30 cmH2O per 30 secondi applicata ogni 30 minuti).
4. regolare la frequenza respiratoria per mantenere una PaCO2 “ragionevole”
5. mantenere una pressione di plateau inferiore a 30 cmH2O
6. ricordarci che il ventilatore può essere un’arma molto potente, sia in positivo che in negativo.

Grazie per la pazienza.

Bibliografia
1. Futier E et al. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med 2013; 369:428-37
2. Vidal Melo MF et al. Protect the lungs during abdominal surgery. Anesthesiology 2013; 118: 1254-7
3. Lam SM et al. Intraoperative low-tidal-volume ventilation (letter). N Engl J Med 2013; 369:1861-3
4. Weiser TG et al. An estimation of the global volume of surgery: a modelling strategy based on available data. Lancet 2008; 372:139-44


Read more ...

La posizione seduta nei pazienti obesi: effetti su flow limitation, PEEP intrinseca e pressione di plateau.

8 nov 2013


La posizione seduta (rispetto a quella supina) modifica flow limitation, PEEP intrinseca e pressione di plateau durante la ventilazione meccanica dei pazienti obesi: questo è il risultato principale di uno studio pubblicato questo mese su Critical Care Medicine (1) che oggi vorrei condividere con gli amici di ventilab.

Nello studio è stato valutato l'effetto del cambio di posizione, da supino a seduto, sulla meccanica respiratoria in un 15 pazienti obesi (BMI > 35) sottoposti a ventilazione meccanica controllata. Vediamo i rilievi principali e cerchiamo di capire come possiamo sfruttarli nella pratica clinica.

Un primo dato da sottolineare tutti i pazienti obesi dello studio avevano flow limitation quando erano supini. Ricordiamo che la flow limitation è l'impossibilità di aumentare il flusso espiratorio (a parità di volume polmonare) durante l'espirazione forzata rispetto all'espirazione passiva. In altre parole, non si riesce ad aumentare la velocità con cui l'aria esce dalle nostre vie aeree nemmeno cercando di soffiare più forte rispetto ad un 'espirazione normale. Il nonno che non riesce a spegnere le candeline sulla torta di compleanno, anche mettendocela tutta, probabilmente ha flow limitation.

La flow limitation è abbastanza facile da diagnosticare nei pazienti sottoposti a ventilazione meccanica grazie alla manovra di compressione manuale dell'addome (per un approfondimento rimando al post del 4 giugno 2012).

La flow limitation è una causa importante di autoPEEP (o PEEP intrinseca come più spesso viene definita). Infatti i pazienti obesi dello studio avevano una autoPEEP di 10 cmH2O (per semplicità riporto i valori mediani del campione dello studio) in posizione supina senza PEEP esterna. Questa autoPEEP, insieme al volume corrente,  contribuisce alla pressione di plateau, che nei pazienti dello studio era di 22 cmH2O in posizione supina.

Riassumiamo: 22 cmH2O di pressione di plateau, 10 cmH2O dei quali determinati dall'autoPEEP ed i rimanenti 12 cmH2O dal volume corrente (che nello studio era circa 8 ml/kg di peso ideale, circa 400 ml).

Quando, a parità di ventilazione, i pazienti obesi erano messi in posizione seduta, l'autoPEEP si riduceva a 1 cmH2O e la pressione di plateau 16 cmH2O. E la flow limitation si riduceva di entità, scomparendo addirittura in 8 dei 15 pazienti.

In questo studio la posizione seduta era ottenuta alzando lo schienale a 70° per ottenere la "poltrona cardiologica", nella quale la schiena del paziente viene tenuta diritta ed il sedere è appoggiato posteriormente contro il letto. Inoltre le gambe erano tenute leggermente aperte per evitare la compressione dell'addome. Nell'immagine qui sotto puoi vedere bene come venivano tenuti i pazienti.



Dobbiamo notare che gli stessi vantaggi della posizione seduta sopra descritta non sono ottenuti con il decubito a 30° che spesso adottiamo in Terapia Intensiva (2).

Quali implicazioni cliniche può avere questo risultato?

Se i pazienti sono in ventilazione assistita, un simile risultato determina una marcata riduzione del lavoro respiratorio grazie all'abbattimento del carico soglia rapprentato dalla PEEP intrinseca. Infatti per iniziare l'inspirazione dobbiamo prima azzerare la pressione residua nei polmoni a fine espirazione: se questa si riduce 10 a 1 cmH2O, evidentementeanche il lavoro fatto per azzerarla si riduce proporzionalmente. (Qui per "lavoro" intendiamo lo sforzo complessivo dei muscoli respiratori che può essere quantificato con il pressure-time product).

Inoltre lo stesso meccanismo può favorire l'interazione paziente-ventilatore riducendo gli sforzi inefficaci, cioè quei tentativi di inspirazione del paziente che non riescono ad attivare il trigger.

Meno chiari sono gli effetti della riduzione della pressione di plateau sullo stress dei polmoni, che è rappresentato dalla pressione che li distende a fine inspirazione. Infatti lo stress del polmone è misurato con la pressione transpolmonare (vedi post del 7 febbraio 2012), ed è ragionevole ipotizzare che questa non sia cambiata molto rispetto alla posizione supina nonostante il calo della pressione di plateau. Si può infatti ipotizzare una riduzione consensuale della pressione pleurica e quindi il mantenimento dello stesso livello di stress. Il ragionamento può risultare complesso, eventualmente lo approfondirò se sarà richiesto in qualche commento. In ogni caso, la riduzione della autoPEEP contribuisce alla riduzione dello stress polmonare.

Altrettanto poco prevedibili possono essere gli effetti emodinamici della posizione seduta negli obesi. Se da una parte si potrebbe avere una riduzione del ritorno venoso dovuta al gradiente idrostatico che la posizione seduta aggiunge (il sangue deve andare "in salita" per raggiungere l'atrio destro dalle zone sottodiaframmatiche del corpo), dall'altra parte la probabile riduzione della pressione pleurica con la posizione seduta dovrebbe invece favorire il ritorno venoso. Lo studio non prende in considerazione questi aspetti e quindi non ci aiuta a capire quale meccanismo possa prevalere.

In conclusione, i risultati dello studio che abbiamo sommariamente presentato ci dicono che la posizione seduta negli obesi (e probabilmente anche in altri pazienti con flow limitation):

- può essere necessaria nelle fasi di weaning per aumentare l'efficienza della ventilazione;

- potrebbe essere utile nei pazienti a rischio di "barotrauma" (cioè con elevate pressioni di plateau);

- gli effetti emodinamici ad essa associati sono imprevedibili e devono essere valutati caso per caso.

Grazie per l'attenzione, un sorriso a tutti.

 

Bibliografia

1 ) Lemyze M et al. Effects of sitting position and applied Positive
End-Expiratory Pressure on respiratory mechanics of critically ill obese patients receiving mechanical ventilation. Crit Care Med 2013; 41:2592-9

2) Benedik PS et al. Effects of body position on resting lung volume in overweight and mildly to moderately obese subjects. Respir Care 2009; 54:334-9

 


Read more ...

Pressione di picco delle vie aeree e rapporto I:E: quando la realtà può ingannarci.

20 ott 2013

La ventilazione meccanica in anestesia ci offre talora difficoltà e spunti interessanti. Oggi ho il piacere di condividere con gli amici di ventilab un caso che mi è stato inviato da Chiara. E' un concentrato di difficoltà: la ventilazione meccanica durante chirurgia laparoscopica  in posizione di Trendelenburg in una paziente obesa. Suggerisco di continuare leggere questo post anche chi non si occupa di anestesia, perchè i problemi che Chiara ha incontrato e le strategie per gestirli appropriatamente sono di interesse generale per tutti coloro che si occupano di ventilazione meccanica.

Ecco il caso di Chiara: "Ho seguito un'anestesia generale in una paziente di 24 anni ma di quasi 100 Kg per 150 cm, Mallampati IV, collo, mammelle e addome voluminosi : habitus "batraciano"; superata la difficoltà ventilatoria all'induzione, l'intubazione tracheale non è stata difficoltosa. Inizio la ventilazione in volume controllato con PEEP 5 --> 7  cmH20 e un volume corrente di circa 600 ml per 14 atti /minuto; saturazione buona, ETCO2 39-40 mmHg e pressioni di picco intorno a 40 cmH20 in Trendelemburg e pneumoperitoneo con pressione media delle vie aeree di 12-13 mmHg; ho osservato però un volume corrente espirato inferiore di 200 ml rispetto a quanto erogato e ho provato a variare il rapporto I:E  che da 1:2 ho corretto come 1,5:1; il risultato è stato un netto miglioramento del volume corrente (600ml erogati e circa 600 ml espirati), una riduzione della ETCOa 35 mmHg ed una lieve riduzione delle pressioni di picco a 37 cmH20; nessun problema al risveglio, dopo 50 minuti di Trendelemburg ; premetto che si trattava di chirurgia pelvica.  A prescindere dal singolo caso, la scelta di variare il rapporto I:E , trattandosi di una paziente con un quadro "restrittivo" può ritenersi valida? Grazie."

Grazie a te Chiara per lo spunto e per avere accettato di farlo discutere su ventilab.
Il problema.

Chiara aveva impostato 600 ml di volume corrente con la ventilazione a volume controllato ma la sua paziente riceveva in realtà 400 ml di volume corrente (ricordo che il volume corrente espiratorio è quello che di norma dobbiamo considerare come volume realmente erogato, indipendentemente da quello impostato). Durante la ventilazione a volume controllato (in assenza di perdite dal circuito) il volume corrente può non essere ottenuto per un solo motivo: la pressione di picco raggiunge il limite massimo consentito nel corso dell'inspirazione. Quindi il ventilatore "protegge" il paziente interrompendo l'insufflazione nel momento in cui la pressione nelle vie aeree diventa superiore al limite prestabilito. Chiara ci dice in effetti che la pressione di picco era 40 cmH2O, un valore a cui spesso si imposta il limite di pressione di insufflazione.
Effetto della variazione del rapporto I:E.

In questo caso si è deciso di aumentare il tempo inspiratorio ed abbreviare il tempo espiratorio  modificando il rapporto inspirazione/espirazione (I:E) da 1:2 a 1.5:1. La frequenza respiratoria era 14/min, quindi ogni ciclo respiratorio durava circa 4.3 secondi (=60/frequenza respiratoria). Quando il rapporto I:E era 1:2, l'inspirazione occupava il 33% del ciclo respiratorio e quindi circa 1.4 secondi ed il restante tempo (circa 2.9 secondi) era lasciato all'espirazione. Impostando un rapporto I:E di 1.5:1, significa che l'inspirazione occupa il 60% del ciclo respiratorio, quindi in questo caso circa 2.6 secondi ed l'espirazione si riduce a 1.7 secondi. Come può questo ridurre le pressioni di picco a 37 cmH2O ed ottenere la completa erogazione dei 600 ml di volume corrente?


Il segreto è nella riduzione della pressione resistiva (vedi post del 05/12/2011): il flusso inspiratorio (data dal rapporto tra volume corrente e tempo inspiratorio) passa da circa 430 ml/s (= 600 ml/1.4 s) a circa 230 ml/s (=600 ml/ 2.6 s). Se il flusso inspiratorio si riduce quasi del 50%, la pressione resistiva (= flusso x Resistenza dell'apparato respiratorio) si riduce molto di più, visto che la relazione tra le due è esponenziale (vedi figura a fianco). Quindi se si riduce la pressione resistiva, si riduce anche la pressione di picco, della quale la pressione resistiva è una componente (vedi post del 24/06/2011).

Così facendo abbiamo però ridotto la pressione di picco, ma aumentato la pressione di plateau, cioè quella parte di pressione delle vie aeree che si scarica sui polmoni. Infatti ricordiamo che la pressione di plateau è la somma di pressione elastica e PEEP totale, come possiamo vedere nella figura qui sotto:



La pressione elastica è data dal volume corrente per l'elastanza. Immaginando che l'elastanza non si sia modificata, l'aumento del volume corrente del 50 % (da 400 a 600 ml effettivi) avrà determinato un aumento della pressione elastica del 50%.

La PEEP totale (somma di PEEP + PEEP intrinseca) è poi molto probabile che sia aumentata, visto che abbiamo ridotto drasticamente il tempo espiratorio (da 2.9 a 1.7 secondi) e contemporaneamente aumentato il volume corrente.

Quindi il risultato del cambio del I:E non ha certamente migliorato la protezione dei polmoni, pur avendo dato l'illusione di farlo. Anzi potrebbe averli esposti a qualche rischio in più.
Una possibile soluzione alternativa.

Prima di tutto, ripensiamo all'impostazione della ventilazione. La signora, ancorchè obesa, era di bassa statura. Il volume corrente andrebbe deciso sulla base del peso ideale e non di quello effettivo (vedi post del 18/12/2011). Se fai due calcoli, il peso ideale della signora sarebbe circa 45 kg (!). Forse un volume corrente di 350-400 ml (circa 8 ml/kg) poteva essere già sufficiente, provvedendo evidentemente ad associare una buona PEEP (nei gravi obesi si potrebbe iniziare con 10 cmH2O, emodinamica permettendo), con una frequenza respiratoria sufficiente ad avere una dignitosa eliminazione della CO2 (per quanto possa essere contronatura quando facciamo gli anestesisti, ricordiamo che un po' di ipercapnia acuta non fa male, anzi potrebbe fare bene).

Secondariamente diamo un'occhiata alla pressioni di plateau (quella che arriva nei polmoni), trascurando la pressione di picco. Nei ventilatori da anestesia spesso non possiamo fare la manovra di occlusione di fine inspirazione. E' però un'ottima abitudine inserire una breve pausa di fine inspirazione nell'impostazione della ventilazione a volume controllato. Avremo il monitoraggio continuo di una pressione di plateau che sarà forse di un paio di cmH2O più alta della pressione di plateau misurata a 3 secondi, ma che consiglio di utilizzare come come soglia da non superare durante la ventilazione: si avvicina alla pressione alveolare delle unità polmonari a bassa costante di tempo (presto dedicherò un post alla costante di tempo, qui non ho lo spazio di approfondire l'argomento). Se la pressione di plateau "va bene" (è cioè inferiore a 30 cmH2O, per dare retta all'opinione comune), non farei nulla anche in presenza di elevate pressioni di picco e non avrei alcun problema ad aumentare il limite della pressione massima delle vie aeree se necessario.

In casi come quello descritto in questo post, se necessario sarei propenso ad accettare anche una pressione di plateau un po' superiore a 30 cmH2O se non ci fossero di segni di rilevante iperinflazione dinamica. Ci possiamo aspettare che una obesa in Trendelenburg con pneumoperitoneo possa avere pressioni addominali e pleuriche elevate. Quindi la pressione transpolmonare e lo stress dovrebbero essere comunque normali anche con pressione di plateau un po' più alta di quanto normalmente raccomandate (vedi post del 24/06/2011).
Conclusioni.

Possiamo concludere che, in tutte le condizioni in cui facciamo ventilazione meccanica controllata, dovremmo:

1) stabilire un volume corrente appropriato rispetto al peso ideale (per le corporature standard massimo 500 ml nei maschi e 400 ml nelle femmine);

2) regolare la frequenza respiratoria per mantenere una PaCO2 "ragionevole" (anche 50 mmHg potrebbero andare benissimo);

3) favorire l'espirazione, quindi utilizzando I:E non troppi alti (misurando se possibile la PEEP intrinseca);

4) monitorare la pressione di plateau (anche su plateau molto brevi) e stare tranquilli se questa è inferiore 30 cmH2O. Se in queste condizioni la pressione di picco è alta, non lasciamoci influenzare, alziamo il limite di pressione massima delle vie aeree;

5) nei pazienti con "molta pancia" (obesi, gravide, pneumoperitoneo, posizione di Trendelenburg) se necessario accettiamo una pressione di plateau anche superiore a 30 cmH2O, a patto che il volume corrente sia ragionevolmente basso e non vi sia una rilevante autoPEEP.

Un sorriso a tutti gli amici di ventilab.

 

 
Read more ...

La PEEP nella ARDS: tabelline o compliance?

6 ott 2013

La scelta della PEEP (Positive End-Expiratory Pressure) nella ARDS (Acute Respiratory Distress Syndrome) è stabilmente, da decenni, uno degli argomenti "caldi" quando si parla di ventilazione meccanica.

Oggi voleve condividere qualche riflessione sulla scelta della PEEP nei pazienti con ARDS.

Negli anni, si sono fatti strada, tra gli altri, due differenti approcci:
1) la scelta della PEEP guidata dalla PaO2;
2) la scelta della PEEP guidata dalla compliance dell'apparato respiratorio.


La PEEP con  la PaO2 come obiettivo.

La scelta della PEEP guidata dalla PaO2 è quella che vedo fare più spesso nella pratica clinica. Ed è, di fatto, quella che è utilizzata anche nei grandi trial sulla ARDS, standardiazzata in tabelline come quella riprodotta a fianco (1). L'utilizzo di questa tabellina è semplice: l'obiettivo è ottenere una PaO2 tra 55 e 80 mmHg, per fare questo si utilizza un'accoppiata predefinita di FIO2 e PEEP come riportata nella tabellina. Se la PaO2 diventa superiore a 80 mmHg, si scala verso accoppiate FIO2/PEEP più basse, se la PaO2 diventa minore di 55 mmHg si va progressivamente verso livelli di FIO2/PEEP più alti. Un compito da bambino di terza elementare...

Che fondamento scientifico ha l'utilizzo di questa tabellina? Nessuno. E' una scelta arbitraria, senza alcun razionale fisiopatologico alcuna evidenza che ne supporti l'efficacia. Penso quindi possa avere lo stesso valore della scelta empirica di PEEP e dellaFIO2che viene spesso fatta.
LA PEEP con la compliance come obiettivo.

Alcuni studi fondamentali sulla ventilazione protetiva hanno confrontato l'effetto della PEEP scelta sulla PaO2 oppure sul punto di flesso inferiore della curva di compliance (cioè la relazione statica pressione-volume) dell'apparato respiratorio,  (più avanti mi spiego meglio e vedrai che è una cosa in realtà semplicissima) (2-4). Valutando complessivamente l'effetto della ventilazione protettiva (basso volume corrente + PEEP sopra il punto di flesso) rispetto alla ventilazione "convenzionale" (alto volume corrente + PEEP sull'ossigenazione), i tre studi messi insieme hanno ottenuto una riduzione assoluta della mortalità del 25%. Un risultato molto migliore rispetto alla riduzione del 9% ottenuta con la sola riduzione del volume corrente a parità di PEEP scelta con la tabellina (1). Quindi un pesante indizio che una scelta della PEEP guardando la compliance è più efficace rispetto alla scelta della PEEP guardando alla PaO2.

Lo scorso mese è stato pubblicato uno studio che mette a confronto (a parità di volume corrente) le due strategie di scelta della PEEP (5): tabellina FIO2/PEEP o la ricerca della miglior (cioè più elevata) compliance. I risultati sono molto interessanti: scegliere la PEEP cercando la miglior compliance riduce la durata delle disfunzioni d'organo e si associa ad una riduzione della mortalità del 18% (quest'ultimo dato non raggiunge la significatività statistica perchè nello studio sono stati arruolati solo 70 pazienti).

Dobbiamo essere consapevoli che possiamo tranquillamente considerare la stessa cosa scegliere la PEEP sul punto di flesso inferiore e scegliere la PEEP per avere la compliance più elevata. Su questo argomento ci sarebbero moltissime considerazioni fisiopatologiche da fare, ma per necessità di brevità le lascio alle risposte ad eventuali commenti.

Se è vero che due indizi fanno una prova, mi sembra di poter concludere che, allo stato attuale delle conoscenze, sia poco prudente utilizzare la PaO2 come criterio di valutazione della PEEP nella ARDS. Al contrario la prudenza vorrebbe, sia per il razionale fisiopatologico che per le evidenze cliniche,  che la PEEP fosse scelta valutando la compliance dell'apparato respiratorio.
La procedura più semplice per scegliere la PEEP con la miglior compliance.

Esistono molti approcci per cercare la PEEP che si associa alla miglior compliance dell'apparato respiratorio o che sia sopra il punto di flesso inferiore della curva di compliance. A mio parere il metodo utilizzato nello studio della Pintado (5), vecchio di almeno 35 anni (6), è il più semplice di tutti, lo consiglio a tutti coloro che non hanno una particolare familiarità con la meccanica respiratoria e vogliono contemporaneamente iniziare a scegliere una PEEP intelligente ed utile al paziente con ARDS. Personalmente preferisco altri approcci, ma per iniziare questo va benissimo. Eccolo in breve.

La compliance (C) è il rapporto tra la variazione (d) di volume (V) e la variazione di pressione (P):  C = dV/dP. Tradotto in maniera semplice nel nostro apparato respiratorio, è il rapporto tra il volume corrente e la pressione elastica (cioè la differenza di pressione tra la pausa di fine inspirazione e la pausa di fine espirazione) (per una descrizione del modo corretto di misurarla vedi il post dell' 11/04/2011).

In altre parole, la compliance aumenta (cioè l'apparato respiratorio diventa più facilmente distensibile) quando, a parità di volume corrente, si rileva una minore pressione elastica (o driving pressure). Quindi quello che dobbiamo fare è, a volume corrente costante, provare diverse PEEP e scegliere quella che determina la minor pressione elastica.

Facciamo un esempio. Se ho una paziente con ARDS il cui peso ideale è 55 kg, sceglierò inizialmente un volume corrente di circa 350 ml (cioè 6 ml/kg di peso ideale). A questo punto inizio a ventilarla con 5 cmH2O di PEEP e (con paziente passiva alla ventilazione) misuro la pressione di plateau (con l'occlusione di fine inspirazione, Pplat nella figura qui sotto) e la PEEP totale (con l'occlusione di fine espirazione, auto-PEEP nella figura qui sotto).




Ipotizziamo di avere una pressione di plateau di 23 cmH2O ed una PEEP totale di 6 cmH2O: la pressione elastica è 17 cmH2O (=23-6). Questo significa che 23 cmH2O sono necessari per ottenere il volume corrente di 350 ml. A questo punto aumento la PEEP a 7 cmH2O e rilevo 24 e 8 cmH2O di pressione di plateau e PEEP totale = 16 cmH2O di pressione elastica. Aumentando di 2 cmH2O alla volta la PEEP, vedo che la pressione elastica diventa 15 cmH2O a 9 di PEEP, 13 cmH2O a 11 di PEEP, 11 cmH2O a 13 di PEEP, 11 cmH2O a 15 di PEEP, 12 cmH2O a 17 di PEEP, 14 cmH2O a 19 di PEEP. A 13 e 15 cmH2O di PEEP ho la minor pressione elastica, quindi questi valori di PEEP si associano alla miglior compliance: la PEEP è scelta! Personalmente sceglierei 15 cmH2O (2 cmH2O al di sopra della minor PEEP che ottimizza la compliance) se non avessi pressioni di plateau elevate o altri segni di stress o problemi emodinamici. Nello studio della Pintado veniva scelta invece quella con la minor pressione di plateau(5): ragionevole anche questo criterio di scelta.

Esistono talora pazienti in cui la compliance non si modifica a diverse PEEP: in questi casi (non frequentissimi) direi di farci guidare dalla protezione dallo stress e dall'ossigenazione.

Anche se non sei un esperto di meccanica respiratoria. prova ad utilizzare questo metodo nel prossimo paziente con ARDS: vedrai che riuscirai a trovare la best PEEP in 10 minuti con qualsiasi ventilatore. Se poi ci prendi gusto, si aprirà un mondo meraviglioso dinnanzi a te...

Un sorriso a tutti gli amici di ventilab.

Bibliografia:

1) ARDS Network. Ventilation with lower tidal volumes as compared with traditional for acute lung injury and the acute respiratory distress sindrome. N Engl J Med 2000, 342:1301-8

2) Amato MB et al. Effect of a protective-ventilation strategy on mortality in the Acute Respiratory Distress Syndrome. N Engl J Med 1998; 338:347-54

3) Ranieri VM et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 1999; 282:54-61

4) Villar J at al. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: A randomized, controlled trial. Crit Care Med 2006; 34:1311-8

5) Pintado MC et al. Individualized PEEP setting in subjects with ARDS: A randomized controlled pilot study. Respir Care 2013 ;58:1416-23

6) Suter PM et al. Effect of tidal volume and positive end-expiratory pressure on compliance during mechanical ventilation. Chest 1978; 73:158-62


Read more ...

Pressione venosa centrale ed attività respiratoria: un semplice accorgimento per la rilevazione corretta.

15 set 2013

Quale è il significato clinico della pressione venosa centrale? A cosa ci serve nella pratica clinica? Per molti le risposte a queste domande sono semplici: è una stima dello stato volemico e ci serve per guidare la somministrazione di fluidi. Questa visione è sostenuta anche da importanti linee guida (vedi ad esempio quella della Surviving Sepsis Campaign), peccato non sia supportata da alcuna evidenza scientifica.... La pressione venosa centrale è il punto di congiunzione tra circolazione venosa e pompa cardiaca destra. Nasconde informazioni utili nei suoi dettagli ed insidie nel suo valore numerico (soprattutto se cerchiamo dei valori soglia). Potremmo parlare a lungo del significato fisiologico e clinico della pressione venosa centrale, ma sarebbe un può fuori tema per ventilab, che è monotematico sull'insufficienza respiratoria e la ventilazione meccanica. Se però ti interessa che si vada "fuori tema" nei prossimi post parlando ancora di pressione venosa centrale, fammelo sapere.

Premesso questo, la prima difficoltà nell'uso della pressione venosa centrale è la corretta rilevazione. Quale punto di riferimento? Angolo sternale o linea ascellare media? La pressione venosa centrale è un'onda complessa. In quale punto leggere il valore? Il valore medio dell'onda, o in qualche punto tra le onde "a", "c", "v"? Quando la traccia della pressione venosa centrale oscilla durante la ventilazione, dove rilevarne il valore? Purtroppo il numero che vediamo sui monitor è spesso acritico ed ha bisogno di un'interpretazione competente. Teniamo conto che gli errori di lettura della pressione venosa centrale possono avere una notevole rilevanza: la pressione venosa centrale ha un range di presunti valori "normali" molto ristretto (tra 1 e 7 mmHg), ed un errore di pochi mmHg nella lettura può portare a conclusioni completamente sbagliate.

Oggi ci occuperemo esclusivamente dell'impatto della attività respiratoria sulla rilevazione della pressione venosa centrale.
La misurazione della pressione venosa centrale durante l'attività respiratoria.

Sappiamo che la rilevazione delle pressioni vascolari intratoraciche, e quindi  anche della pressione venosa centrale, dovrebbe essere eseguita a fine espirazione. In alcuni casi è molto semplice, perchè non esistono rilevanti variazioni di pressione venosa centrale durante la respirazione, come ad esempio nella figura 1.


Figura 1.

Ma in altri casi l'effetto della respirazione può indurre il monitoraggio a fornirci il numero "sbagliato": in questo caso siamo noi a dovere correggere con intelligenza la lettura del monitor, come nell'esempio in figura 2.


 Figura 2

Il monitor ci dice che il paziente ha 7 mmHg di pressione venosa centrale, ma in effetti questo non è vero. Vediamo l'onda della pressione venosa centrale che oscilla tra plateau di 12-13 mmHg e valli di 0-2 mmHg. Quali sono i valori di fine espirazione? In questo caso sono i plateau di 12-13 mmHg perchè il paziente è in respiro spontaneo: le pressioni all'interno del torace (anche quelle vascolari!) si riducono durante l'inspirazione e ritornano al loro livello basale (più elevato) durante l'espirazione. Quindi in questo caso specifico dovremo leggere 12-13 mmHg di pressione venosa centrale e non 7 mmHg come ci dice il monitor. Dobbiamo precisare che possiamo aiutare alcuni monitor a fare una lettura migliore andando a specificare nel menu se il paziente è in respiro spontaneo o in ventilazione controllata. Purtroppo questo non risolve i problemi in caso di ventilazione assistita (come quasi tutti i pazienti in Terapia Intensiva) o di espirazione attiva.

Quali implicazioni pratiche? Notevoli per gli amanti di linee guida e bundles: ad esempio la già citata Surviving Sepsis Campaign ci dice di somministrare fluidi per ottenere una pressione venosa centrale di 8-12 mmHg. Quindi se crediamo al valore che ci dà il monitor dovremmo somministrare ancora fluidi, se invece leggiamo accuratamente la pressione venosa centrale  dovremmo iniziare l'infusione di norepinefrina in caso di ipotensione .

E' diverso il caso nei pazienti in ventilazione meccanica controllata, come nell'esempio che possiamo vedere di seguito.


 Figura 3

In questo caso l'onda della pressione venosa centrale raggiunge il proprio massimo durante l'inspirazione, quando tutte le pressioni intratoraciche aumentano per effetto dell'insufflazione meccanica in assenza di depressione pleurica secondaria all'utilizzo dei muscoli inspiratori. Quindi, al contrario del caso precedente, la pressione venosa centrale a fine espirazione coincide con il valore più basso. In questo caso sarebbe 6-7 mmHg, il monitor ci ha azzeccato (anche perchè era stato correttamente aiutato inserendo l'informazione che il paziente è in ventilazione controllata).

Ora vediamo un altro esempio un po' più complesso di un paziente con ventilazione assistita:

Figura 4 Figura 4

In questo caso abbiamo un'ampia oscillazione della pressione venosa centrale, da valori negativi ad olte 30 mmHg, con la lettura automatica che ci dà il valore di 13 mmHg. Durante ventilazione assistita l'attività respiratoria del paziente è complessa: c'è una iniziale fase inspiratoria che porta al triggeraggio dell'inspirazione meccanica, quindi una fase di assistenza a pressione positiva, in cui la pressione pleurica può sia continua a diminuire che ad aumentare, ed infine l'espirazione. Un bel labirinto in cui doversi orientare. Ci può essere d'aiuto un semplice accorgimento: mantenere una mano sull'addome del paziente durante l'osservazione della curva di pressione venosa centrale sul monitor. Seguendo con la mano i movimenti dell'addome durante la ventilazione, potremo facilmente individuare inizio e fine di inspirazione ed espirazione senza staccare gli occhi dal monitor e capire in tempo reale quando ci troviamo a fine espirazione. Con la mano sull'addome possiamo facilmente percepire anche un espirio forzato attraverso la rilevazione della contrazione dei muscoli addominali durante l'espirazione (prova, vedrai che è molto semplice). E' importante, perchè la fine espirazione che dobbiamo trovare è evidentemente una fine espirazione passiva e non attiva.

Rivediamo la figura  4 mentre tocchiamo l'addome del paziente e contemporaneamente guardiamo il monitor:


 Figura 4 bis

In questo caso ci rendiamo conto che i picchi di pressione venosa centrale corrispondono alla fase espiratoria, ma che questa è molto forzata e che quindi la pressione intratoracica aumenta per effetto della contrazione attiva ed intensa dei muscoli espiratori. Ci rendiamo conto che l'espirazione forzata è preceduta da un breve plateau, che è allo stesso livello dell'inizio dell'inspirazione. Questo può essere il livello di pressione venosa centrale in assenza di attività muscolare respiratoria (sia inspiratoria che espiratoria) e lo abbiamo identificato con la linea tratteggiata rossa a circa 5 mmHg, un valore ben diverso (e con potenziali implicazioni pratiche antitetiche) rispetto ai 13 mmHg rilevati dal monitor.

Prima di arrivare alle conclusioni, prova a decidere tu quale è il valore di pressione venosa centrale (approssimativamente) corretto in questo paziente (le linee bianche tratteggiate orizzontali sono a 7.5 mmHg di distanza tra loro):


 Figura 5

Trascurando ogni considerazione sull'utilizzo clinico della pressione venosa centrale, possiamo riassumere quando abbiamo visto in 3 punti:

1) il valore della pressione venosa centrale non sempre coincide con quello rilevato dal monitoraggio;

2) il valore corretto di pressione venosa centrale dovrebbe essere rilevato a fine espirazione passiva (o comunque in assenza di attività dei muscoli inspiratori ed espiratori)

3) possiamo facilmente identificare il punto giusto di rilevazione della pressione venosa centrale guardando la traccia sul monitor e contemporaneamente seguendo la respirazione del paziente con una mano sul suo addome.

Un sorriso a tutti.

Riproduciamo qui i commenti CON IMMAGINI originariamente pubblicati su ventilab.org (per i commenti senza immagini, vedi la sezione commenti al termine del post):



Read more ...

L'infermiere ed il monitoraggio grafico della ventilazione meccanica: perchè è indispensabile, come imparare.

1 set 2013

Molti infermieri seguono assiduamente ventilab (per inciso, vi chiedo la cortesia di dedicare 3 minuti alla compilazione del questionario sugli Aspetti relazionali nella donazione di organi che trovate all'inizio della pagina). E' un segno tangibile dell'interesse e della voglia di migliorare le conoscenze sulla ventilazione meccanica ed il suo monitoraggio, un argomento tradizionalmente ostico in cui serve qualcuno che ti dà una mano.

Ecco la buona notizia per gli infermieri: finalmente venerdì 18 ottobre 2013 si terrà a Brescia il "Corso base di ventilazione meccanica ed interpretazione del monitoraggio grafico" (clicca qui per vedere la locandina). E' un corso per infermieri fatto da infermieri (ci sarò comunque anche io a dare, se necessario, il mio contributo), molto curato sia nella parte teorica che in quella pratica, con obiettivi didattici chiari che portarenno, già alla fine della giornata, all'acquisizione di nuove competenze. Nelle edizioni già svolte a livello locale i riscontri sono stati ottimi sia in termini di gradimento che di apprendimento.

Il "Corso base di ventilazione meccanica ed interpretazione del monitoraggio grafico" è a numero chiuso, dura tutta la giornata ed ha un costo simbolico di 35 euro (pranzo incluso). Per iscriverti clicca qui, cerca nell'elenco degli eventi "Corso base di ventilazione meccanica ed interpretazione del monitoraggio grafico" e procedi all'iscrizione online (tutti i dettagli sono comunque specificati nella locandina).

Ho lasciato alla fine la presentazione dei docenti, non perchè meno importante ma perchè il post proseguirà con un contributo interamente scritto da loro. I due docenti sono Cristian Fusi ed Enrico Bulleri, due bravissimi infermieri che da anni lavorano con me (e con l'altrettanto meraviglioso gruppo di infermieri e medici della Terapia Intensiva di Fondazione Poliambulanza) e che si sono appassionati di curve e ventilatori fin dall'inizio della loro attività. Non spendo altre parole, la prova dei fatti dirà il resto.

Ecco il post che Enrico e Cristian hanno preparato per noi.

_°_°_°_°_°_°_°_°_°_°_°_°_°_


Il signor Alberto, di anni 73, è stato ricoverato presso il nostro reparto con una diagnosi di insufficienza respiratoria. L'anamnesi patologica remota riporta lieve insufficienza renale, diabete mellito tipo 2 ed ipertensione arteriosa.

Il decorso in terapia intensiva è stato caratterizzato da un quadro di grave disfunzione polmonare conseguente a polmonite comunitaria. Dopo tracheotomia in ottava giornata ed in risposta a miglioramento progressivo della patologia di ammissione, comincia periodi di respiro spontaneo in t-tube dalla decima giornata.


Dopo uno di questi periodi di circa due ore, l’infermiere che segue Alberto riscontra tachipnea (frequenza respiratoria 32/min) e dispnea, desaturazione (SpO2 86%), tachicardia 131/min e moderata ipertensione arteriosa.


Si esegue EGA arterioso e si contatta il medico di guardia telefonicamente, perchè impegnato in Pronto Soccorso per una consulenza, che decide di ricollegare il paziente al ventilatore in modalità pressione di supporto (PSV), confermando l'impostazione del ventilatore precedente il periodo di respirazione spontanea (PEEP 5 cmH2O e PS 5 cmH2O).


Vediamo nella figura 1 come si presenta il monitoraggio grafico (in giallo la pressione delle vie aeree ed in verde il flusso):



FIGURA 1

L’obiettivo di questo intervento dovrebbe essere mettere a riposo la muscolatura respiratoria che mostrava segni di distress e “ricaricare le pile” per un nuovo ciclo di respiro spontaneo.


Siamo sicuri che il setting della ventilazione in precedenza impostato ci consenta di raggiungere quest’obiettivo? A nostro parere no, abbiamo diversi segni che ci permettono di capire che il nostro paziente stia ancora faticando.


Diamo per scontato che i lettori di ventilab conoscano “il metodo” dell’A-B-C-D-E-F, in caso contrario invitiamo a dargli una “sbirciatina”, (post del 13/08/10; 20/08/10; 29/08/10).


Come primo segno notiamo che la frequenza respiratoria è ancora elevata: 32 atti/min in respiro spontaneo e 30 atti/min dopo 10 minuti di ventilazione.






FIGURA 2

Nella figura 1, guardando la curva flusso-tempo (in verde), distinguiamo la fase inspiratoria ed espiratoria: sopra la linea dello zero siamo in inspirazione e di conseguenza al di sotto dello zero abbiamo la curva di flusso espiratorio. Ricordiamo che il flusso inspiratorio di un paziente a riposo in PSV si presenta con un picco di flusso iniziale a cui segue un progressivo decadimento (Fig. 2).
Nel nostro caso abbiamo invece un flusso inspiratorio sinusoidale, indice d’intensa attività della muscolatura respiratoria.


Inoltre, osservando il setting della ventilazione (PS 5 cmH2O e PEEP 5 cmH2O) ci aspettiamo che il ventilatore mantenga durante tutta la fase inspiratoria una pressione costante di 10 cmH2O, ma sulla nostra curva pressione-tempo questo non accade (figura 3) perché il paziente sottrae aria più velocemente di quanto il ventilatore non riesca a dargliene, impedendogli così di pressurizzare l'apparato respiratorio fin dall’inizio .





 
FIGURA 3: differenza di pressione tra inizio e fine inspirazione



FIGURA 4: differenza tra la curva attesa e quella riscontrata

La linea rossa tratteggiata nella figura 4 rappresenta l’andamento della pressione attesa (o meglio ciò che il ventilatore vorrebbe fare), ma l’attività del paziente “svuota” questa onda quadra. Il lavoro inspiratorio del paziente cessa solo alla fine, quando il polmone è ormai pieno d’aria, permettendo al ventilatore di raggiungere il valore di pressione inspiratoria impostato (10 cmH2O).

Tantissime altre informazioni possono essere ricavate da queste curve, ma basta anche questa semplice analisi del monitoraggio grafico per individuare un problema. L’infermiere che teneva monitorato il paziente ha saputo interpretare le curve ed avvisare tempestivamente il medico, che ha provveduto ad aumentare la pressione di supporto adeguandola all’esigenza del paziente, nel nostro caso da 5 a 10 cmH2O, favorendo il riposo della muscolatura respiratoria e permettendo così, dopo poco tempo, un nuovo ciclo di respiro spontaneo.


Nella figura 5 vediamo come si presenta il monitoraggio grafico dopo che l’aumento del PS ha permesso di raggiungere l’obiettivo e l’infermiere, è stato ben attento, poi, a controllare eventuale presenza di autociclaggio (post 27/01/13).





 
FIGURA 5 

Nella nostra esperienza lavorativa il monitoraggio grafico è stato uno potente strumento per capire le necessità dei pazienti, valutare l’efficacia di un trattamento, risolvere diversi problemi in autonomia (quando di nostra competenza) e ridurre in diverse situazioni il tempo d’intervento medico con segnalazioni tempestive e qualificate.

 
Read more ...

UN INTERESSANTE CASO DI INTERAZIONE TRA VENTILAZIONE MECCANICA ED EMODINAMICA Parte 2

11 ago 2013

Una volta recuperato il filo guida, il tracheoscopio rigido viene rimosso e posizionato il tubo di piccolo diametro mantenendo le precedenti impostazioni della ventilazione. Nel giro di pochi minuti compare bradicardia progressiva e ipotensione con  desaturazione periferica. Dopo i primi attimi d’interrogativi è stato preso un semplice provvedimento: deconnettere la paziente dal  ventilatore e lasciarla espirare per 30 secondi. Purtroppo non abbiamo documentazione fotografica del ventilatore  prima della deconnessione ma era più o meno come questa:

 

 

 

 



 

Deconnessa dal ventilatore, la paziente ha presentato una rapida risalita della frequenza cardiaca ai valori precedenti insieme alla pressione arteriosa. A quel punto si è ripresa la procedura modificando l’impostazione della ventilazione.


Come spieghiamo quanto successo? La paziente è andata incontro ad iperinflazione dinamica con un progressivo aumento del volume polmonare totale e conseguente risentimento emodinamico. Questo è un quadro molto simile a un grave stato asmatico acuto nel quale è possibile l’insorgenza di arresto cardiaco per grave e irrisolvibile iperinflazione.


Forse sapete che la PEEP “occulta” è stata scoperta da Marini proprio per l’effetto emodinamico che produce: si era accorto che alcuni pazienti, sottoposti a monitoraggio emodinamico, quando deconnessi dal ventilatore per le normali pratiche assistenziali, presentavano un incremento della portata cardiaca. Nel caso della nostra paziente l’interazione tra le impostazioni del ventilatore e le caratteristiche dell’apparato toraco – polmonare ha prodotto iperinflazione responsabile a sua volta di una condizione di bassa portata cardiaca: vediamo di capire gli elementi in gioco.


L’impostazione del ventilatore era di 500 ml di volume corrente per 15 atti/minuto con un rapporto I:E di 1:2 e quindi con un ridotto tempo espiratorio (2,2 secondi) rispetto ad un volume relativamente grande. I limiti d’allarme sulla “Pressione di picco” erano alti tanto che il ventilatore erogava senza problemi il volume corrente impostato. Durante la procedura con il tubo di piccolo diametro si è avuto un progressivo rialzo sia delle pressioni di picco (superate tranquillamente dal ventilatore) sia della pressione di pausa. Il meccanismo è quello descritto nell’immagine qui sotto con l’aggravante che la ventilazione meccanica insuffla inesorabilmente volume nei polmoni oltre qualunque punto d’equilibrio.  



Inoltre il tubo piccolo, a causa di un aumento delle resistenze pari alla quarta potenza del raggio, richiede un tempo espiratorio prolungato rispetto ad uno di maggior diametro e questo costituisce fattore aggravante della dinamica respiratoria. Condizioni di rischio per lo sviluppo di tale fenomeno sono la presenza di uno o più fattori quali: tempo espiratorio ridotto, resistenze espiratorie elevate (come negli asmatici e nei BPCO, o per tubi di calibro ridotto), volumi correnti elevati, bassa elastanza toraco - polmonare (per es. enfisema), flow limitation.


Abbiamo visto in un precedente post (del 30/04/13) come sia stretta l’interazione tra l’apparato cardiovascolare e polmonare. In particolare l’aumento delle pressioni intratoraciche (in sostanza quella intrapolmonare) è in grado di ridurre la portata cardiaca riducendo il ritorno venoso. Il caso della nostra paziente è assimilabile a quello di un asmatico (post del 31/12/10), il cui problema cruciale è la lentezza del flusso espiratorio dovuta all’ostruzione bronchiale: i pazienti iniziano l’inspirazione prima che l’espirazione sia stata completata e così ad ogni nuova inspirazione sempre più volume resta nei polmoni con lo sviluppo d’iperinflazione polmonare e PEEP occulta. Una ventilazione meccanica inappropriata può rapidamente peggiorare l’iperinflazione, indurre danno polmonare, pneumotorace o collasso cardiovascolare, aumentando quindi la morbilità e la mortalità di questi pazienti.


In pratica cosa possiamo fare in casi come questi?


Ventiliamo in modalità “volume controllato” inserendo una pausa inspiratoria di durata adeguata (15 – 20%). In questo modo possiamo osservare attentamente la pressione di pausa (assimilabile al plateau) per individuare precocemente l’insorgenza d’iperinflazione: il volume intrappolato viene svelato dall’aumento della pressione statica nelle vie aeree. Rispetto all'inizio della procedura aumenteranno le pressioni di picco e di pausa.


All’inizio della ventilazione meccanica o subito dopo il posizionamento del tubo di piccolo diametro la possibile inflazione non si è ancora prodotta; dobbiamo identificare a quale pressione di picco, dopo il posizionamento del tubo di piccolo diametro (o all’inizio della ventilazione meccanica nell’asmatico), si ottiene il volume corrente desiderato e quali sono i valori di pressione statica. In questo modo possiamo settare i limiti d’allarme della “Pressione di picco” che ci permettano di erogare il volume corrente e nel caso questi limiti vengano superati disporre di un allarme d’iperinflazione. Questa, infatti, produrrà il rialzo della pressione statica (di pausa) e conseguentemente di picco: il ventilatore ci avviserà e potremo intervenire tempestivamente per prevenire l’aggravamento del fenomeno.


E' inoltre corretto impostare i parametri della ventilazione con gli obiettivi di un piccolo volume corrente (6 ml/Kg), un adeguato tempo espiratorio intervenendo sia sulla frequenza (10 – 12 atti/minuto, forse l’intervento più efficace) sia sul tempo espiratorio (I:E = 1:3 o 1:4) sapendo che questo comporterà un aumento delle pressioni di picco (quella pericolosa è il plateau!); PEEP ridotta al minimo indispensabile fino a ZEEP.


 

Post Scriptum - Il caso si è presentato nel nostro reparto alcune settimane fa e non è stato volutamente ricercato. Per questo motivo durante la procedura non è stata raccolta documentazione fotografica: tuttavia la prima fotografia è della paziente in oggetto ed è stata scattata in quanto reclutata in uno studio clinico e ben si è prestata allo scopo. La seconda fotografia è la prima, ritoccata per riprodurre quanto osservato ma non documentato iconograficamente per la rapidità con si sono succeduti gli eventi.


Bibliografia


1. Ciaglia P, Firsching R, Syniec C. Elective percutaneous dilatational tracheostomy. A new simple bedside procedure preliminary report. Chest 1985; 87: 715–9.


2. Fantoni A, Ripamonti D. A non-derivative, non-surgical tracheostomy: the translaryngeal method. Intensive Care Med 1997; 23: 386–92.


3. Pepe PE, Marini JJ. Occult positive end expiratory pressure in mechanically ventilated patients with airflow obstruction: the auto PEEP effect. Am Rev Resp Dis 1982;123:166-70.


4. Marini JJ, Culver BII, Btler J. Mechanical effect of lung distention with positive pressure on cardiac function. Am Rev Respir Dis. 1981 Oct;124(4):382-6.




 

Read more ...