Flow Index: uno strumento unico per ottimizzare il supporto inspiratorio

5 apr 2023

Durante la ventilazione meccanica il supporto inspiratorio dovrebbe essere modulato per mantenere un'ottimale attività dei muscoli inspiratori.

L’attività dei muscoli respiratori può misurata come la pressione da essi sviluppata durante l’inspirazione (Pressure-time product, PTP, vedi anche post del 30/10/2016)(figura 1), che è la somma di: a) la pressione generata dai muscoli respiratori per espandere i polmoni, espressa dalla riduzione della pressione esofagea durante l’inspirazione (PTPL, area tratteggiata obliqua); b) la pressione necessaria per espandere la gabbia toracica (PTPCW, area punteggiata) che è calcolata in ciascun istante dell’inspirazione come il prodotto tra l’elastanza della gabbia toracica (calcolabile dalla presisone esofagea) e volume inspirato .

Figura 1

Il supporto inspiratorio ha l'unica funzione di supportare l'attività dei muscoli respiratori, che è misurata dalla pressione esofagea. Detto questo, sembrerebbe ovvio che la pressione più importante da misurare nei pazienti ventilati dovrebbe essere la pressione esofagea… Nella pratica clinica la pressione esofagea è misurata raramente e l’appropriatezza del supporto inspiratorio è decisa principalmente valutando frequenza respiratoria e volume corrente ed eventualmente indicatori indiretti dell'attività dei muscoli respiratori, come ad esempio P0.1 (post del 27/06/2021), PMI (post del 08/05/2016), dPocc (1) e Flow Index, argomento di questo post.

Il Flow Index.

Il Flow Index è un numero adimensionale che descrive la forma della curva di flusso inspiratorio dal suo picco fino al momento del ciclaggio (2). Se questa porzione di flusso ha una concavità verso l’alto, il Flow Index assume un valore < 1 (tanto minore quanto più evidente è la concavità verso l’alto), se decresce linearmente il Flow Index è 1il Flow Index è > 1 se invece il flusso presenta una concavità verso il basso (Flow Index tanto maggiore quanto più è marcata la concavità verso il basso) (figura 2). 

Figura 2

Il Flow Index nasce dalla consapevolezza che durante la ventilazione pressometrica il flusso inspiratorio è decrescente se il paziente è passivo, mentre la riduzione della pressione alveolare per effetto dell'attività dei muscoli respiratori produce una concavità verso il basso.

Un’immagine vale più di tante parole: in figura 3  vediamo come cambia il profilo del flusso con l’aumento del livello del supporto di pressione (PS).

Figura 3

Con PS 20 il paziente, dopo l'attivazione del trigger inspiratorio, diventa passivo per tutta l’inspirazione ed il flusso è decrescente. Man mano che si riduce il supporto inspiratorio (progredendo da destra a sinistra nella figura 3), l’attività inspiratoria diventa progressivamente più intensa e parallelamente la curva di flusso assume una morfologia con una concavità verso il basso sempre più accentuata. Ne consegue che di pari passo con l’aumento dell’attività dei muscoli respiratori il Flow Index diventa sempre più alto.

Questo concetto è tutt’altro che una novità per chi ha partecipato ai nostri corsi di ventilazione o segue ventilab: la valutazione dell’attività dei muscoli respiratori dalla valutazione della curva di flusso veniva già proposta nel nostro primo corso di ventilazione meccanica del 2007, è stata l’argomento di uno dei primi post che ho scritto su ventilab (quello del 25/03/2010) ed è una parte importante del metodo RESPIRE (in particolare della sua lettera “I”), presentato nella sua prima versione nel post del 20/08/2017

Il Flow Index ha semplicemente trasformato la valutazione soggettiva e qualitativa della curva di flusso in una misurazione oggettiva quantitativaGli studi sul Flow Index (2-4) hanno consentito di dimostrare due cose importanti:

1. la morfologia del flusso inspiratorio in ventilazione pressometrica è efficace per valutare in modo non-invasivo e continuo l’attività dei muscoli respiratori. Prima del Flow Index esisteva solamente il razionale teorico di questo approccio (che era già molto), ora a questo si è aggiunta anche la dimostrazione sperimentale;

2. la valutazione di frequenza respiratoria e volume corrente per avere un’idea dello sforzo inspiratorio non può sostituire l'informazione data dal Flow Index, ma tutt'al più deve integrare il Flow Index. Infatti la robusta associazione tra Flow Index e sforzo inspiratorio si conferma anche quando la relazione è “aggiustata" per il volume corrente e la frequenza respiratoria.

Come si calcola il Flow Index

Una breve nota tecnica. Il Flow Index esamina la parte di flusso successiva al picco e precedente il ciclaggio (figura 4) e su questa parte applica la stessa equazione utilizzata sulla pressione delle vie aeree per calcolare lo stress index: $$flusso = a + b \cdot tempo^c $$

Il parametro c, l’esponente del tempo, è il Flow Index. Di seguito due esempi.

Figura 4

Al momento il Flow Index è calcolabile solamente con una procedura di analisi matematica dei dati di flusso, ma in futuro potrebbe facilmente essere calcolato automaticamente dai ventilatori meccanici se ovviamente si aggiungeranno altre validazioni agli studi già esistenti che ne confermano la capacità di identificare i pazienti sovra- o sotto-assistiti (3,4). Nel frattempo rimane assolutamente spendibile nella pratica clinica l’analisi qualitativa della curva di flusso, che porta alla facile identificazione “a occhio” dei pazienti con elevata o ridotta attività inspiratoria, cioè con o senza concavità verso il basso nella curva di flusso.

La peculiarità del Flow Index rispetto alle altre stime dell’attività dei muscoli respiratori.

Come abbiamo accennato, oltre al Flow Index esistono anche altri indicatori dell’attività dei muscoli inspiratori. C'è però una differenza importante tra il Flow Index e gli altri indici di attività dei muscoli respiratori. 

P0.1, PMI e dPocc sono influenzati sia dall’attività inspiratoria pre-trigger che da quella post-trigger, mentre il Flow Index solo dall’attività inspiratoria post-trigger. L’implicazione clinica di questa differenza è fondamentale, cerchiamo di capire il perchè. 

Nella figura 5 è riproposto il PTP che abbiamo visto in figura 1 in una forma leggermente più complessa. 

Figura 5

L'attività inspiratoria inizia sulla linea "A" (come si può notare dall'inizio della riduzione della pressione esofagea), ma il flusso inspiratorio inizia solo sulla linea "C". La parte di PTP precedente la linea "C" è attività inspiratoria pre-trigger, dovuta al carico soglia sia all'autoPEEP (PTPpeepi) che all'attivazione del trigger (PTPtr). La porzione di PTP oltre la linea "C" (PTPpost) è attività inspiratoria post-trigger, ed è l'unica che si verifica esclusivamente dopo l'inizio del supporto inspiratorio (cioè l'aumento della pressione delle vie aeree, Paw) ed è simultanea al porzione di flusso analizzata dal Flow Index

Quindi il Flow Index è sensibile solo quella parte di sforzo inspiratorio che si origina durante il supporto inspiratorio. In altre parole, il Flow Index è un indice specifico dell'attività inspiratoria post-trigger e tra i parametri ventilatori è influenzato dall'unico che agisce post-trigger, cioè il supporto inspiratorio

Al contrario,  P0.1, PMI e dPocc sono modificati sia dallo sforzo pre- che post-trigger e quindi su di loro hanno un impatto sia le impostazioni del ventilatore che agiscono pre-trigger (trigger inspiratorio e PEEP in relazione all'autoPEEP) che quella post-trigger (supporto inspiratorio).

L'implicazione clinica è che in un paziente con segni e sintomi di eccessiva attività dei muscoli respiratori, un Flow Index > 1 (flusso con concavità verso il basso) suggerisce in prima istanza di aumentare il supporto inspiratorio. Al contrario un Flow Index ≤ 1 (flusso che decresce linearmente o con concavità verso l'alto) dovrebbe indicare che lo sforzo post-trigger è già ridotto e che quindi dovrebbe essere più efficace ridurre lo sforzo pre-trigger modificando la PEEP o il trigger oppure riducendo l'autoPEEP con la terapia broncodilatatrice e/o la posizione seduta e/o la terapia diuretica. Vediamo in figura 6 un esempio di un paziente con queste caratteristiche:

Figura 6

L’attività dei muscoli respiratori inizia in corrispondenza della linea verticale tratteggiata bianca ed il flusso inizia sulla linea tratteggiata verticale rossa. Tutto il calo della pressione esofagea (Pes) si consuma tra queste due linee. Dopo l'inizio del flusso la pressione esofagea non cala ulteriormente, segno di una attività dei muscoli inspiratori minima o nulla in questa fase. 

Una grave debolezza dei muscoli respiratori (rilevabile da una MIP molto bassa, vedi post 28/06/2013) è forse l'unica eccezione a questo approccio: in questo caso l'attività inspiratoria post-trigger è bassa qualsiasi livello di supporto inspiratorio, perchè i muscoli respiratori non riescono a generare una pressione più elevata. In questa condizione il volume corrente dipende unicamente dal supporto inspiratorio ed è l'unica condizione clinica in cui, a paziente attivo, il supporto di pressione debba essere regolato in prima istanza per ottenere il volume corrente dediderato.

Conclusioni

Una breve sintesi dei punti principale del post di oggi:

- la variazione inspiratoria della pressione esofagea è il vero obiettivo del supporto inspiratorio. Ne consegue che la pressione esofagea dovrebbe essere misurata nei pazienti inventilazione assistita, perlomeno in quelli con weaning prolungato;

- il Flow Index è un numero che misura la concavità del flusso inspiratorio ed è una stima indiretta dell’attività post-trigger dei muscoli respiratori;

- un Flow index <= 1 (flusso inspiratorio con concavità verso l’alto o con decadimento lineare) indica una passività dei muscoli respiratori durante il supporto inspiratorio (post-trigger);

- un flow index > 1 (concavità verso il basso) indica attività inspiratoria durante il supporto inspiratorio (post-trigger): tanto maggiore è il Flow Index (cioè la concavità verso il basso del flusso), tanto maggiore l'attività inspiratoria;

- nei pazienti con segni di eccessiva attività inspiratoria è opportuno incrementare il supporto di pressione se Flow Index > 1 (concavità verso il basso), mentre è meglio ottimizzare PEEP e trigger o ridurre l'autoPEEP se Flow Index <= 1 (concavità verso l'alto o decadimento lineare). Questo approccio potrebbe non essere appropriato nei pazienti con bassa MIP.

Un sorriso e buona Pasqua a tutti gli amici di ventilab.


Bibliografia

1. Bertoni M, Telias I, Urner M, et al.: A novel non-invasive method to detect excessively high respiratory effort and dynamic transpulmonary driving pressure during mechanical ventilation. Crit Care 2019; 23:346
2. Albani F, Pisani L, Ciabatti G, et al.: Flow Index: a novel, non-invasive, continuous, quantitative method to evaluate patient inspiratory effort during pressure support ventilation. Crit Care 2021; 25:196
3. Albani F, Fusina F, Ciabatti G, et al.: Flow Index accurately identifies breaths with low or high inspiratory effort during pressure support ventilation. Crit Care 2021; 25:427
4. Miao M-Y, Chen W, Zhou Y-M, et al.: Validation of the flow index to detect low inspiratory effort during pressure support ventilation. Ann Intensive Care 2022; 12:89
Read more ...

Airway Pressure Release Ventilation (APRV). Parte seconda: le notevoli differenze tra ventilatori meccanici.

5 feb 2023
Nella prima parte del post ho rivisitato indicazioni, razionale e criteri di impostazione della APRV.

Ora passiamo dalla teoria alla pratica: vediamo come quattro diversi ventilatori eseguono la APRV a parità di impostazione.

Questo post penso possa essere seguito meglio se fin dall’inizio è chiaro il punto di arrivo. Per questo motivo eccezionalmente apriamo con le conclusioni, nella convinzione che forniscano un filo logico sul quale raccogliere le analisi che seguiranno.

Conclusioni.

I ventilatori meccanici, a parità di impostazione, eseguono la APRV in modo sostanzialmente differente l'uno dall'altro: il medesimo setting può produrre in un ventilatore una APRV eccellente ed in un'altro "ventilazione killer". Si può fare una buona APRV con qualsiasi ventilatore a patto che se ne capisca la specifica logica di esecuzione. Per questo scopo:
  • l'unico approccio efficace è la corretta interpretazione delle due tracce principali del monitoraggio, le curve di pressioneflusso. E' un esercizio meraviglioso e senza alternative;
  • è fondamentale capire se il ventilatore che si sta utilizzando è a "priorita di pressione" oppure a "priorità di trigger";
  • nei ventilatori con “priorità di pressione” è possibile fare un’ottima APRV con il trigger non attivo: è garantito il respiro spontaneo a Palta e vi è un rigoroso rispetto dei tempi di  Palta e Pbassa;
  • nei ventilatori con “priorità di trigger” è assolutamente indispensabile impostare la APRV con un trigger molto sensibile per consentire il respiro spontaneo del paziente a Palta;
  • in qualsiasi ventilatore, sia a “priorità di pressione” che a “priorità di trigger”, l’attivazione del trigger ha come conseguenza la variabilità dei tempi di Palta e/o Pbassa, che assumono valori spesso diversi da quelli impostati.
Dopo aver presentato le conclusioni, iniziamo l'analisi che ha portato ad esse.

Il test.

Ho testato su 4 differenti ventilatori meccanici una APRV così impostata: pressione alta (Palta) 18 cmH2O, pressione bassa (Pbassa) 0 cmH2O, tempo di Palta (TPalta) 3.5", tempo di Pbassa (TPbassa) 0.5".
Per il momento, identificherò i ventilatori con un numero (1, 2, 3 e 4): non è tanto importante sapere quale ventilatore fa una cosa e quale ne fa un’altra, ma piuttosto dare gli strumenti a ciascuno per capire cosa fa il ventilatore che utilizza quando si imposta una APRV. Comunque alla fine del post ti svelerò a che ventilatore corrisponde ciascun numero.

Nei ventilatori 1, 2 e 3 ho impostato la ventilazione come APRV e non genericamente come bilevel. Il ventilatore 4 offre un menù unico bilevel/APRV.

Su ciascun ventilatore la APRV è stata testata in tre condizioni: a paziente passivo, a paziente attivo con trigger disattivato (o impostato al valore massimo del trigger a pressione, quindi trigger molto difficile da attivare) e a paziente attivo con trigger a flusso sensibile (1-2 l/s).

Il circuito del ventilatore era collegato ad un polmone test, che da questo momento per noi sarà "il paziente", con il quale si è simulato sia il paziente attivo che passivo.

Di tutti i ventilatori presento uno screenshot con 20” consecutivi di ventilazione. Per il ventilatore 4 ho riprodotto i grafici a partire dai dati grezzi (quindi non si vede il vero aspetto dello schermo del ventilatore, anche se ho cercato di rispettare i colori originali).

APRV a paziente passivo.

Non perdo tempo a commentare le APRV a paziente passivo: tutti i ventilatori eseguono allo stesso modo il compito assegnato. In figura 1 ho affiancato le schermate dei 4 ventilatori e, a parte le differenze grafiche, in tutti troviamo sostanzialmente rispettato quello che abbiamo impostato.
Figura 1

La APRV però, come abbiamo visto nella prima parte del post, acquista il proprio senso quando accoglie l'attività respiratoria spontanea del paziente.  Pertanto analizziamo il comportamento dei 4 ventilatori con paziente attivo, prima con trigger disattivato e poi con trigger attivo.

Ventilatore 1.

Nella figura 2 vediamo il “ventilatore 1” con trigger “disattivato” (-15 cmH2O).
Figura 2

Nella figura ci sono alcune linee e frecce che ritroverai con lo stesso significato anche nelle figure successive: il passaggio a Palta è identificato dalla linea tratteggiata verticale rossa e quello a Pbassa dalla linea tratteggiata grigia. Il tempo di Palta effettivamente applicato dal ventilatore è quindi tra la linea rossa e la successiva linea grigia. Il TPalta impostato (3.5”) è indicato dalla lunghezza della freccia rossa a due punte. La reale durata di Pbassa è l’intervallo tra la linea tratteggiata grigia e la successiva rossa ed il TPbassa impostato è rappresentato dalla lunghezza della freccia a due punte blu (che corrisponde a 0.5”).

Nella figura 2, come atteso, vi è una perfetta coincidenza tra TPalta impostato e quello mantenuto dal ventilatore. Anche TPbassa effettivo ed impostato coincidono.

Nel punto “a” si vede il flusso inspiratorio al passaggio da Pbassa a Palta, generato dalla variazione di pressione del ventilatore.
Nei punti “b” e “c” vediamo una espirazione ed una inspirazione a pressione delle vie aeree costante: questa è una CPAP a Palta. La pressione resta costante perché il ventilatore ha come priorità il mantenimento della pressione impostata, indipendentemente dall’attivazione del trigger. Definiremo a “priorità di pressione” i ventilatori che si comportano in questo modo. 
Per mantenere costante la pressione delle vie aeree il ventilatore mantiene costante il volume di gas nel circuito: se il paziente inspirando sottrae gas dal circuito per portarlo nei polmoni, il ventilatore istantaneamente rimpiazza questo volume immettendo una identica quantità di gas (creando quindi un flusso inspiratorio). Se il paziente immette gas nel circuito espirandolo dai polmoni, il ventilatore istantaneamente fa uscire dalla valvola espiratoria un uguale volume di gas (creando quindi un flusso espiratorio).

Questo meccanismo, che dovrebbe essere tipico di tutte le ventilazioni bilevel, è costantemente attivo nelle fasi in cui la pressione deve rimanere costante ed è operativo indipendentemente dalla presenza di un trigger.

Nel punto “d” si vede un’espirazione con aumento della pressione. Questo accade perchè in questo caso l’espirazione attiva del paziente è stata molto più rapida della reazione del ventilatore nel far uscire dal circuito una quantità di gas pari a quella espirata dai polmoni del paziente (per l’interpretazione dell’interazione paziente-ventilatore vedi anche i post del 20/08/2017 e del 24/09/2017).

Molto interessante anche quello che si vede dopo il punto “e”. I
l paziente inizia una inspirazione già a Pbassa, come si evince dall'inizio del flusso inspiratorio in questa fase. Pbassa è uno dei due livelli di CPAP e come tale consente sia inspirazione che espirazione a pressione costante. L'attività inspiratoria a Pbassa è molto rara solo per la estrema brevità di questa fase, ma ogni tanto può comunque accadere.

Nella figura 3 vediamo cosa succede se sul ventilatore 1 attiviamo un trigger a flusso.
Figura 3

La prima cosa evidente è che la durata prestabilita di Palta (le frecce rosse) non coincide più con quella realmente erogata (tra linea verticale tratteggiata rossa e la successiva grigia). Nel punto “a” il paziente inizia un’espirazione su Palta che prosegue anche nel punto “b”, il momento in cui teoricamente Palta dovrebbe passare a Pbassa. In questo caso il ventilatore attende che l’espirazione prosegua ulteriormente prima di interrompere Palta. Per non appesantire il post, non faccio speculazioni sul possibile criterio utilizzato in questo punto per terminare Palta.

Nel punto “c” il paziente inizia un’inspirazione a Palta, che è in corso anche nel punto “d”, in cui scadrebbero i 3.5” di Palta. Il ventilatore finché il paziente inspira mantiene il livello di pressione, facendo coincidere il passaggio a Pbassa con il termine dell’inspirazione spontanea. Anche in questo caso, come nel ciclo precedente, l'effetto è l’aumento effettivo del TPalta rispetto a quello impostato.

Esattamente il contrario accade nei punti “e”, in cui il tempo di Palta si interrompe in anticipo rispetto a quello impostato. Il ventilatore rileva l'inizio dell'espirazione spontanea del paziente poco prima del termine di Palta e decide di sincronizzare il passaggio a Pbassa con l’espirazione del paziente.

L’analisi del monitoraggio evidenzia che l'esclusione o l'attivazione del trigger fa eseguire al ventilatore 1 due APRV diverse. La APRV senza trigger consente l’attività respiratoria spontanea del paziente sia a Pbassa che a Palta, ma è una vera ventilazione asincrona, che impone i propri tempi indipendentemente dalle fasi del ciclo respiratorio del paziente. Quando si attiva il trigger, la durata di Palta può essere accorciata o allungata per sincronizzarsi con l’attività respiratoria del paziente. Il tempo di Pbassa non appare sostanzialmente modificato nelle simulazioni fatte, probabilmente perché in un tempo così breve non riesce a manifestarsi un'attività respiratoria spontanea una volta che vi è la sincronia su Palta.

Ventilatore 2.

In figura 4 vediamo il ventilatore 2 con il trigger “off”: in questa macchina è possibile disattivare completamente il trigger.
Figura 4

In assenza di trigger il ventilatore 2 si comporta come il ventilatore 1, facendo una APRV rigidamente asincrona con il rispetto della durata dei tempi di Palta e Pbassa.

Da notare l'ottima stabilità di Palta durante l’attività respiratoria del paziente (punti “a”, “b”, “c”), anche quando questa è chiaramente asincrona (“a”): anche questo è un ventilatore a “priorità di pressione” e mantiene efficacemente le pressioni impostate indipendentemente dalla presenza del trigger.

Nella figura 5 si vede come esegue la APRV il ventilatore 2 dopo aver attivato il trigger a flusso.
Figura 5

Nel ventilatore 2, diversamente dal ventilatore 1, l’attivazione del trigger mantiene costante il tempo di Palta sul valore impostato, ma consente di abbreviare la durata di Pbassa, come evidente nel punto “a”, in cui nel periodo a Pbassa il paziente attiva il trigger anticipando l’inizio del periodo a Palta e riducendo il TPbassa.

Ventilatore 3.

La figura 6 mostra la APRV con il ventilatore 3 con il paziente attivo ed il trigger "disattivato" (in realtà il meno sensibile possibile , -15 cmH2O).
Figura 6

La scelta di disattivare il trigger, assolutamente efficace con i ventilatori 1 e 2, con il ventilatore 3 mette in atto una ventilazione killer. Nel punto “a” si può vedere che a Palta è consentita l’espirazione se si genera un aumento della pressione delle vie aeree. I punti “b” invece mostrano cosa accade quando il paziente tenta di inspirare: se non viene superata la soglia trigger, il ventilatore non eroga flusso e la conseguenza è la riduzione della pressione delle vie aeree. In altri termini, senza l’attivazione del trigger il paziente inspira contro valvole chiuse e depressurizza il circuito. Il ventilatore non si preoccupa della riduzione della pressione finchè questa è inferiore al trigger impostato. Nel punto “c” il paziente (ricordo che in realtà è un polmone test…) riesce con uno sforzo erculeo a generare una depressione superiore alla soglia trigger: solo a questo punto il ventilatore ritiene vi siano le condizioni per aprire la valvola inspiratoria e consente di far arrivare il tanto agognato flusso inspiratorio al paziente. Possiamo definire a ”priorità di trigger” i ventilatori che si comportano in questo modo.

Con i ventilatori a “priorità di trigger” è quindi PROIBITO fare APRV con trigger poco sensibile, cosa invece assolutamente possibile con i ventilatori a “priorità di pressione” come abbiamo visto in precedenza.

Vediamo nella figura 7 cosa succede se nel ventilatore 3 si imposta un trigger a flusso di 2 l/min.
Figura 7

Ora la APRV consente l’inspirazione a Palta grazie all'attivazione del trigger ad ogni tentativo di inspirazione del paziente.

Analogamente al ventilatore 1, anche nel ventilatore 3 l’attivazione del trigger sincronizza la durata di Palta con l’attività respiratoria del paziente e il TPalta impostato non necessariamente coincide con quello effettivo. In particolare vediamo nei punti “a” che il ventilatore sincronizza sempre la discesa a Pbassa con il termine del flusso inspiratorio a Palta. Questo può anticipare il termine di
Palta se avviene poco prima del termine programmato di TPalta (come nel primo, secondo e quarto punto “a”). Nei punti “b” e “c” si vede che il termine di Palta è posticipato se al momento prefissato di termine di TPalta è in corso un atto respiratorio del paziente (è già stata iniziata un’espirazione (“b”) oppure sta iniziando un’inspirazione (“c”)).

Il ventilatore 3 con l'attivazione del trigger risolve il problema dell’inspirazione su Palta. La sincronizzazione introdotta su Palta non mantiene la durata prefissata di TPalta

Ventilatore 4.

Nella figura 8 vediamo come si comporta il ventilatore 4 facendo la APRV con il trigger "disattivato" (cioè al minor livello di sensibilità possibile, -20 cmH2O).
Figura 8

Similmente al ventilatore 3, il ventilatore 4 è a “priorità di trigger”: l’impostazione della APRV senza trigger garantisce il rispetto dei tempi di Palta e Pbassa a prezzo di un’impossibilità ad inspirare durante Palta (punti “b”), mentre l’espirazione è possibile se viene superata la Palta impostata (punti “a”).

Quindi anche con il ventilatore 4 non bisogna mai fare APRV senza trigger! Assolutamente vietato.

Attivando il trigger a flusso sul ventilatore 4 vediamo cosa succede (figura 9):
Figura 9

Anche in questo caso l'attivazione del trigger consente l'inspirazione del paziente a Palta.
La durata di Palta effettiva può diventare più breve di quella impostata se il ventilatore rileva l’inizio di una espirazione a Palta poco prima del termine prefissato di TPalta (punto “a”): in questo caso la fine di Palta viene fatta coincidere con l’inizio dell’espirazione. Se al termine di TPalta il paziente sta inspirando (punto “b”), il ventilatore prolunga TPalta fino al momento dell’inizio della successiva espirazione (punto “c”). TPalta ha la durata impostata se non si verificano gli eventi precedenti (punti “d”). Il tratto comune di questi criteri è che comunque il passaggio a Pbassa avviene sempre quando inizia o è in corso un’espirazione.

Questo ventilatore è l’unico dei 4 in cui si riesce ad osservare un significativo allungamento del tempo di Pbassa (dal punto “e” al punto “f”); se il paziente attiva il trigger a Pbassa, questo ventilatore passa a Palta solo quando cessa il flusso inspiratorio a Pbassa (punto “f”).

APRV: ventilatori a confronto.

La ventilazione asincrona su due livelli (cioè la “vera APRV”) è di fatto possibile solo con ventilatori a “priorità di pressione” senza trigger.

L’attivazione del trigger, indispensabile per i ventilatori a “priorità di trigger” e opzionale in quelli a “priorità di pressione”, ha come conseguenza la variabilità dei tempi di Palta e Pbassa rispetto ai valori impostati.

L’attivazione del trigger ha comunque prodotto risultati diversi nei 4 ventilatori.
- Durata Palta. In un solo ventilatore (il 2) si è mantenuto il TPalta costante al valore impostato, accettando che i
l termine di Palta possa cadere in qualunque fase del respiro del paziente. Con i ventilatori 1, 3 e 4 (il primo a “priorità di pressione” e gli altri due a “priorità di trigger”) TPalta può allungarsi o abbreviarsi quando vi sono le condizioni per sincronizzare la fine di Palta con l’inizio di un’espirazione spontanea. Possiamo dire che nel ventilatore 2 il TPalta è uguale a quello impostato in tutti i cicli di Palta, mentre negli altri ventilatori probabilmente il TPalta realmente applicato è in media simile a quello impostato, potendo variare tra un ciclo ed un altro.

- Durata Pbassa. Nei ventilatori 1 e 3 non ho osservato significative variazioni del TPbassa, che sembra sempre coincidere con quello impostato. Il ventilatore 2 accorcia invece il TPbassa se il paziente inizia a inspirare in questa fase (di fatto il trigger è attivo solo a Pbassa). Può essere una scelta ragionevole, perché se il paziente inizia a inspirare probabilmente il volume polmonare non è eccessivamente elevato e la riduzione del TPbassa potrebbe avere un razionale. In maniera opposta al ventilatore 2, il ventilatore 4 allungare il TPbassa se il paziente inizia ad inspirare in questa fase. Essendo il paziente in inspirazione, l’allungamento del TPbassa non dovrebbe determinare un aumento del dereclutamento (il volume polmonare aumenta) e quindi questo non dovrebbe essere un problema. Potrebbe essere forse più discutibile il passaggio a Palta proprio al termine di una inspirazione spontanea, che produce di fatto una doppia inspirazione senza espirazione tra le due (punto “f” nella figura 9). Il rischio di raggiungere una variazione di volume eccessiva con questo meccanismo è però bilanciato dal fatto che l’aumento della pressione a Palta produce una variazione di volume ridotta se il paziente ha smesso di inspirare ed ha già un elevato volume polmonare che genera una elevata pressione alveolare.

Possiamo quindi concludere che ventilatori diversi fanno APRV diverse, alcune identiche a quella ideale, altre invece “aggiustate”. Conoscere il proprio ventilatore ci consente di evitare APRV “killer” e di adeguare l’impostazione del ventilatore alla reale interazione paziente-ventilatore.
Come esercizio ti propongo di capire da solo come funziona la APRV sui tuoi ventilatori meccanici utilizzando un pallone test al posto del paziente.

E per finire sveliamo i nomi dei ventilatori testati: il ventilatore 1 è Bellavista 1000 (il modello testato è IMT, oggi è un ventilatore Vyaire), il ventilatore 2 è Elisa 800 Löwenstein, il ventilatore 3 è G5 Hamilton ed il ventilatore 4 è Servo-u Getinge.

Faccio un complimento a tutti coloro che sono riusciti a seguire fino in fondo questo lunghissimo ed impegnativo post. Sono convinto che, oltre ad avere dato informazioni utili per fare APRV, sia stato un bell’esercizio di analisi della ventilazione meccanica e del monitoraggio grafico.

Come sempre, un sorriso a tutti gli amici di ventilab.
Read more ...

Airway Pressure Release Ventilation (APRV). Parte prima: la modalità di ventilazione.

31 gen 2023
La Airway Pressure Release Ventilation (APRV) in alcuni casi consente di ottenere risultati impossibili per tutte le altre modalità di ventilazione assistita nei pazienti con ARDS

Vale la pena ricordare che due meta-analisi hanno mostrato che la APRV riduce la mortalità nei pazienti con insufficienza respiratoria ipossiemica rispetto alle modalità di ventilazioni convenzionali (1, 2). Non ritengo che le meta-analisi siano la risposta definitiva ai nostri dubbi, ma mi sembra che questa premessa sia un motivo sufficientemente valido per conoscere la APRV e sfruttarla in quei casi in cui le modalità di ventilazione convenzionali mostrano i propri limiti.

Non è la prima volta che dedico un post alla APRV. Questo è diviso in due parti: nella prima parte cercherò di riproporre in maniera originale i concetti principali che caratterizzano la APRV, nella seconda parte metterò a confronto il modo di applicare la APRV di quattro differenti ventilatori meccanici. Scopriremo che spesso i ventilatori meccanici non fanno la APRV come vorremmo e che bisogna imparare a leggere bene il proprio ventilatore per non rischiare di fare una APRV omicida.

Il paziente candidato alla APRV.

La APRV può essere utile quando si ha tachipnea (frequenza respiratoria superiore a 35-40/min), elevato volume corrente (600-800 ml, cioè > 10 ml/kg di peso ideale) ed elevata driving pressure (alla pausa di fine inspirazione più di 15-20 cmH2O sopra PEEP) dopo la sospensione della paralisi e la riduzione della sedazione nei pazienti con ARDS.

La APRV.

La APRV è una ventilazione in cui il livello più elevato di pressione (Palta) è mantenuto per un tempo superiore rispetto al livello inferiore di pressione (Pbassa) (figura 1).
Figura 1

Nell'esempio in figura 1 il tempo di applicazione di Palta (TPalta) (parentesi rossa)  è 3.5”, mentre il tempo in cui il ventilatore mantiene Pbassa (TPbassa, parentesi grigia) è 0.5”. Si nota che il passaggio da Palta a Pbassa (linea punteggiata verticale grigia) genera un flusso espiratorio, mentre al contrario il passaggio da Pbassa a Palta  (linea punteggiata verticale rossa) produce un flusso inspiratorio.

Le due pressioni che si alternano nella APRV altro non sono che due livelli di CPAP, uno a Palta  e l'altro a Pbassa: il paziente può respirare spontaneamente su entrambi i livelli di CPAP (figura 2).
Figura 2

Durante i periodi di Palta  (tra la linea tratteggiata rossa e la successiva linea tratteggiata grigia) le inspirazioni spontanee, cioè non associate ad aumento della pressione delle vie aeree (aree evidenziate in azzurro), si alternano alle espirazioni spontanee.

Il TPbassa invece è così breve (0.5”) che non in realtà non consente una libera attività respiratoria spontanea e solitamente è caratterizzato dal flusso espiratorio secondario alla riduzione di pressione.

Dal momento che Pbassa ha una durata talmente breve da non consentire di fatto il respiro spontaneo su questo livello, la APRV è di fatto una CPAP alla sola Palta.

Le brevi fasi di riduzione della pressione a Pbassa sono “rilasci” di pressione che aggiungono una ventilazione controllata al respiro spontaneo. Per questo si chiama “release ventilation”: il rilascio di pressione determina una espirazione seguita immediatamente da una inspirazione per effetto del ripristino di Palta: una specie di ventilazione al contrario, dove prima si espira e poi si inspira.

APRV: i vantaggi della ventilazione asincrona.

La APRV è (o dovrebbe essere, come vedremo nella seconda parte del post) una ventilazione asincrona, in cui non vi è un adattamento del ventilatore all’attività respiratoria del paziente. L'asincronia evita che l’inspirazione del paziente coincida ogni volta con l’insufflazione del ventilatoreL’asincronia della APRV determina la riduzione del volume corrente medio e delle variazioni tidal della pressione transpolmonare (3, 4), un effetto protettivo nella ventilazione dei pazienti con elevato drive respiratorio.

Questa asicronia peraltro non penalizza significativamente l'interazione paziente-ventilatore perchè in fondo la APRV è per circa il 90% del tempo una CPAP a Palta: la CPAP non ha bisogno di sincronizzazione essendo un respiro spontaneo senza supporto inspiratorio.

Perchè mantenere a lungo Palta.

L’applicazione di un'elevata pressione positiva per un lungo periodo è supportata da un duplice razionale:
- nella ARDS una pressione positiva sufficientemente elevata può ridurre il dereclutamento alveolare, favorendo una più omogenea distribuzione della ventilazione nei polmoni con un minor stress dinamico a parità di volume corrente; 
- l’inspirazione su un elevato livello di pressione determina una riduzione delle variazioni tidal di pressione pleurica (e quindi transpolmonare) rispetto all’inspirazione su valori di pressione più bassi (5).

Come impostare Palta.

La scelta di Palta è il compromesso tra diversi obiettivi: mantenere una pressione sufficientemente elevata da garantire un efficace reclutamento alveolare, evitando però eccessive variazioni di volume nelle fasi di rilascio o un risentimento emodinamico
Spesso si suggerisce una Palta inferiore alla pressione di plateau che si accetta durante la ventilazione convenzionale. Personalmente penso che sia ragionevole iniziare con un valore di Palta tra 20 e 25 cmH2O, riservando i valori più alti di questo range ai pazienti con compliance particolarmente bassa. E' opportuno rivalutare il livello di Palta se questo si associa a variazioni di volume eccessive (superiori al volume corrente accettato nella ventilazione protettiva) o insufficienti (se si avvicinano allo spazio morto). Volendomi sbilanciare, suggerirei di mantenere una variazione di volume durante i rilasci mediamente tra 4-6 ml/kg di peso ideale.

Come impostare la durata di Pbassa

Sperimentalmente una espirazione a ZEEP non superiore a 0.5" non ha il tempo di produrre un rilevante collasso alveolare (6). Per questo la durata della Pbassa in APRV, salvo buoni motivi, non dovrebbe essere superiore a 0.5”. Per evitare un rilevante collasso alveolare durante Pbassa alcuni propongono di regolare il TPbassa per interrompere il flusso espiratorio che a circa il 75% del picco.

Come impostare la durata di Palta.

Essendo TPbassa poco variabile (≤ 0.5"), il tempo su cui si può agire molto più liberamente è il TPalta. Più il TPalta è breve, più frequenti sono i rilasci di pressione, maggiore il contributo della ventilazione meccanica e quindi minore la necessità di ventilazione spontanea del paziente. Viceversa l'allungamento del TPalta, riduce il numero di rilasci ed allo stesso tempo prolunga le fasi del possibile respiro spontaneo a Palta. Nei soggetti che iniziano APRV ancora in coda di sedazione/paralisi si potrebbe suggerire un TPalta di circa 3”: in questo modo, con 0.5” di TPbassa, vi sarebbero circa 17 rilasci al minuto. Ma appena inizia a vedersi una sufficiente attività inspiratoria spontanea, TPalta dovrebbe essere aumentato, tenendo conto che a 4.5” i rilasci diventano 12 al minuto.

Conclusione.

Per concludere, riassumiamo i concetti fodamentali:
  • La APRV è una ventilazione per pazienti con ARDS con attività respiratoria spontanea;
  • La APRV è una ventilazione asincrona che riduce le escursioni tidal di pressione transpolmonare;
  • La parte spontanea della respirazione avviene come una CPAP Palta;
  • Il ventilatore genera una ventilazione controllata grazie ai rilasci a Pbassa;
  • Il tempo di Pbassa deve essere molto breve per evitare il collasso alveolare in espirazione;
  • L’allungamento del tempo di Palta aumenta la quota di respiro spontaneo.
Ti aspetto a berevissimo per la seconda parte del post. Come sempre un sorriso algi amici di ventilab.

Bibliografia

  1. Carsetti A, Damiani E, Domizi R, et al.: Airway pressure release ventilation during acute hypoxemic respiratory failure: a systematic review and meta-analysis of randomized controlled trials. Ann Intensive Care 2019; 9:44
  2. Lim J, Litton E: Airway pressure release ventilation in adult patients with acute hypoxemic respiratory failure: a systematic review and meta-analysis. Crit Care Med 2019; 47:1794–1799
  3. Rittayamai N, Beloncle F, Goligher EC, et al.: Effect of inspiratory synchronization during pressure-controlled ventilation on lung distension and inspiratory effort. Ann Intensive Care 2017; 7:100
  4. Richard JCM, Lyazidi A, Akoumianaki E, et al.: Potentially harmful effects of inspiratory synchronization during pressure preset ventilation. Intensive Care Med 2013; 39:2003–2010
  5. Yoshida T, Grieco DL, Brochard L, et al.: Patient self-inflicted lung injury and positive end-expiratory pressure for safe spontaneous breathing: Curr Opin Crit Care 2020; 26:59–65
  6. Neumann P, Berglund JE, Mondéjar EF, et al.: Dynamics of lung collapse and recruitment during prolonged breathing in porcine lung injury. J Appl Physiol 1998; 85:1533–1543
Read more ...

Corsi Ventilab 2023

14 dic 2022

Ho il piacere di segnalarti che è stato definito il calendario dei corsi Ventilab per l'anno 2023: puoi trovare tutte le informazioni nella pagina «I prossimi corsi "Ventilab"».

Nel 2023 i corsi Ventilab si terranno in diverse città italiane, come richiesto sempre più spesso da molti colleghi. Ripetendo la positivissima esperienza di alcune di edizioni "fuori sede" del 2022, spesso avremo l'onore ed il piacere di affiancare al nostro gruppo docenti prestigiosi che lavorano nelle aree in cui si terranno i corsi: un'occasione preziosa per ampliare le prospettive, stimolare la discussione e portare un sereno approccio critico alla crescita professionale.

Al momento sono attive le iscrizioni a "Le modalità di ventilazione meccanica", un corso che ritengo propedeutico a tutti gli altri sulla ventilazione meccanica. A breve si apriranno progressivamente le iscrizioni anche a tutti gli altri corsi: se sei interessato, tieni d'occhio la pagina «I prossimi corsi "Ventilab"», che sarà aggiornata in tempo reale.

L'organizzatore dei corsi, Istituto Medicina Didattica – I.ME.D., è a tua disposizione per qualsiasi ulteriore informazione o necessità di supporto tecnico.

Come sempre, un sorriso ai tanti amici di Ventilab.

Read more ...

Indice di "respiro rapido e superficiale"… oppure indice di "respiro rapido o superficiale"?

29 nov 2022

Il rapporto tra frequenza respiratoria e volume corrente (RR/VT, respiratory rate/tidal volume) è noto come indice di respiro rapido e superficiale (rapid shallow breathing index, RSBI) o indice di Tobin

Nel 1986 Tobin ha dimostrato che il volume corrente si riduce immediatamente e la frequenza respiratoria aumenta immediatamente alla sospensione della ventilazione meccanica nei pazienti che successivamente falliranno il trial di respiro spontaneo (figura 1) (1).

Figura 1
Qualche anno dopo, nel 1991, Yang e Tobin hanno mostrato che il rapporto tra frequenza respiratoria e volume corrente (misurato dopo 1 solo minuto di respiro spontaneo) era un indice accurato nel prevedere il successo o l’insuccesso del trial di respiro spontaneo per l’estubazione. Trovarono che il valore di RR/VT di 105 min-1·L-1 era quello che meglio discriminava coloro che superavano o fallivano un trial di respiro spontaneo: chi aveva un RR/VT ≤ 105 aveva buone probabilità di essere estubato, chi aveva un RR/VT > 105 invece aveva alte probabilità di fallire il weaning (2).

Come sempre, è buona cosa andare andare a leggere con attenzione i risultati riportati nell’articolo per capirne meglio il significato. Da questi vediamo che il RR/VT ≤ 105 ha un potere predittivo negativo di 0.95 ed un potere predittivo positivo di 0.78.

Traduciamo in un linguaggio più comprensibile questi numeri: i pazienti con respiro rapido e superficiale (RR/VT > 105) quasi certamente falliranno il trial di respiro spontaneo (95% di probabilità), ma non è scontato che quelli senza respiro rapido e superficiale (RR/VT ≤ 105) potranno essere estubati, poichè questo accade solo nel 78% dei casi. 

Fare una predizione positiva nel 78% dei casi non è segno di grande accuratezza. Ad un 78% di predizioni corrette fa infatti da contraltare un 22% di predizioni sbagliate, un livello di errore certamente elevato: si sbaglia in un caso ogni 4-5 pazienti, che non è poco se pensiamo che tirando a caso si sbaglia “solamente” 1 volta su 2.

Dopo più di 30 anni di utilizzo del RR/VT, è arrivata anche la meta-analisi su questo indice, seppur gravata da rilevanti limiti come quasi tutte le meta-analisi (in questo caso gli studi hanno utilizzato soglie di RR/VT molto diverse e definito in maniera difforme l’outcome dello svezzamento) (3). Premessi questi limiti, la meta-analisi ridimensiona ancor di più la predittività del RR/VT per lo svezzamento dalla ventilazione meccanica, riportando una sensibilità di 0.83 ed una specificità di 0.58 (erano rispettivamente 0.97 e 0.64 nel primo studio del 1991).

Cerchiamo ora di ragionare insieme per capire il significato del pattern respiratorio nella previsione del successo dello svezzamento della ventilazione meccanica.

Nella figura 2 vediamo un grafico frequenza respiratoria-volume corrente: tutte le possibili combinazioni di frequenza e volume che danno un RR/VT esattamente uguale a 105 sono disposte sulla linea nera trasversale che nel grafico sale da sinistra a destra.

Figura 2

Tutte le combinazioni “frequenza respiratoria-volume corrente” che danno un RR/VT < 105 cadono nell’area verde sopra la riga, mentre quelle che corrispondono ad un RR/VT > 105 sono contenute nell’area rossa sotto la riga.

Volendo semplificare, potremmo dire che i pazienti con una combinazione frequenza respiratoria-volume corrente che cade sopra la riga dovrebbero essere svezzabili, quelli sotto la riga no.

Poniamo nel grafico i pattern respiratori di tre ipotetici pazienti, che con diverse combinazioni di frequenza respiratoria e volume corrente hanno tutti un RR/VT di 80, un valore normalmente ritenuto compatibile con il mantenimento del respiro spontaneo (figura 3).

Figura 3

L’ipotetico paziente nel punto A ha una frequenza respiratoria di 30 ed un volume corrente di 0.375 L. L’indice di respiro rapido e superficiale di 80 ci farebbe prevedere la sostenibilità del respiro spontaneo, un’ipotesi che anche a buon senso può apparire ragionevole.

Ora analizziamo l’ipotetico paziente al punto B, che ha sempre 80 di RR/VT, ma con la combinazione di una frequenza respiratoria di 40/min ed un volume corrente di 0.5 L: questo paziente presenta un respiro rapido ma non superficiale, condizione tipica dei pazienti con alto drive respiratorio.

Penso sia difficile prevedere che una condizione di questo tipo possa essere mantenuta lungo in un soggetto intubato se si procede all'estubazione. Un volume minuto di 20 L è contemporaneamente sia un carico di lavoro respiratorio enorme sia un notevole stress per il parenchima polmonare. Nonostante il RR/VT favorevole, è probabile che questo paziente possa fallire l’estubazione

Prendiamo ora in considerazione l’ipotetico paziente al punto C, anch’esso con 80 di RR/VT, che ha una frequenza respiratoria di 15/min ed un volume corrente di poco meno di 190 mL: in questo caso il respiro non è rapido ma è superficiale, una condizione difficile da osservare in clinica ma utile per il nostro ragionamento. E’ difficile pensare di estubare un paziente con un volume corrente di poco superiore allo spazio morto e che quindi probabilmente sarà ipercapnico: un respiro superficiale, anche se non rapido, difficilmente può essere compatibile con uno svezzamento dalla ventilazione meccanica.

Ci è ora evidente che il vero ostacolo allo svezzamento dalla ventilazione meccanica è il "respiro rapido o superficiale". Ipotizziamo di definire rapido un respiro con una frequenza respiratoria > 35/min e superficiale un respiro con un volume corrente inferiore a 330 ml (che corrisponde a 4.7 ml/kg per una persona di 70 kg di peso ideale).

Se condividiamo queste considerazioni, possiamo così riproporre nella figura 4 il grafico della figura 3:

Figura 4
Sono state tratteggiate le aree con volume corrente inferiore a 330 ml (respiro superficiale) e con frequenza respiratoria superiore a 35/min (respiro rapido). Le possibili combinazioni di volume corrente e frequenza respiratoria che cadono nelle aree tratteggiate sono ragionevolmente poco compatibili con l’estubazione per un problema di respiro o rapido o superficiale (o entrambi).

Con questo approccio i pazienti B e C diventano probabilmente non svezzabili nonostante il RR/VT di 80. Il paziente A invece rimane un paziente in un'area con alte probabilità di weaning dalla ventilazione meccanica.

Tutta l’area rossa sotto la linea che delimita la zona del RR/VT > 105 è coperta dalle aree tratteggiate del respiro rapido o del respiro superficiale: con questa interpretazione confermiamo che RR/VT > 105 è effettivamente un predittore di fallimento del weaning dalla ventilazione meccanica (in accordo con l’elevato potere predittivo negativo già mostrato da Yang e Tobin).

Esistono però delle aree di respiro superficiale ma non rapido e di respiro rapido ma non superficiale al di sopra della riga del RR/VT di 105 (cioè con RR/VT < 105) che si aggiungono come condizioni che difficilmente sono compatibili con il raggiungimento dell’estubazione. Questo può spiegare il limitato potere predittivo negativo del RR/VT.

Forse come predittore di weaning dalla ventilazione meccanica si potrebbe passare dal “respiro rapido e superficiale” al “respiro rapido o superficiale”. Il “respiro rapido o superficiale” può essere identificato dalla presenza anche di uno solo tra una alta frequenza respiratoria (>35-40?) o un basso volume corrente (< 4-5 ml/kg di peso predetto?). Un’idea ovviamente da testare nella propria pratica clinica e nella ricerca clinica.

La figura 5 mostra in chiave insiemistica i concetti sopra esposti.

Figura 5


Il “respiro rapido e superficiale” è l’intersezione del respiro rapido e del respiro superficiale, specifica perciò una condizione più precisa rispetto a ciascuno dei due insiemi principali, quella di una probabile sproporzione forza/carico. Dal punto di vista fisiopatologico è forse un indicatore più interessante del “respiro rapido o superficiale”, ma forse come semplice indice di weaning potrebbe essere preferibile quest’ultimo.

Concludiamo sintetizzando in poche battute il contenuto del post:

  • esistono due condizioni che possono indipendentemente far prevedere il fallimento dello svezzamento dalla ventilazione meccanica di un soggetto intubato:
    • il respiro rapido (alta frequenza respiratoria)
    • il respiro superficiale (basso volume corrente)
  • il “respiro rapido o superficiale” è individuato dalla presenza di almeno di una di queste due condizioni;
  • il “respiro rapido e superficiale” (identificato da un rapporto RR/VT > 105) indica la contemporanea presenza delle due condizioni. Essendo un sottoinsieme del “respiro rapido" e del "respiro superficiale” identifica una condizione in cui è improbabile il weaning dalla ventilazione meccanica;
  • l’assenza di “respiro rapido e superficiale” (RR/VT ≤ 105) non esclude la presenza di un “respiro o rapido o superficiale”, ed in presenza di quest’ultimo il successo del weaning è comunque improbabile;
  • il “respiro rapido o superficiale” potrebbe essere più appropriato del “respiro rapido e superficiale” per identificare i pazienti con elevata probabilità di fallimento allo svezzamento dalla ventilazione meccanica.

Come sempre un sorriso a tutti gli amici di ventilab.


PS: a breve pubblicherò nella pagina "I prossimi corsi "Ventilab"" il calendario 2023.


Bibliografia

1.     Tobin M, Perez W, Guenther S, et al.: The pattern of breathing during successful and unsuccessful trials of weaning from mechanical ventilation. Am Rev Respir Dis 1986; 134:1111–1118

2.     Yang KL, Tobin MJ: A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation. N Engl J Med 1991; 324:1445–1450

3.     Trivedi V, Chaudhuri D, Jinah R, et al.: The usefulness of the rapid shallow breathing index in predicting successful extubation. Chest 2022; 161:97–111


Read more ...

Emotrasfusione: emoglobina o emogasanalisi?

30 set 2022
Quale è la concentrazione di emoglobina a cui è opportuno fare una trasfusione di emazie?

C’è un largo consenso, ripreso anche dalle linee guida (1), nell’identificare come soglia di trasfusione un valore di emoglobina di 7 g/dL. Numerosi studi hanno infatti dimostrato che la trasfusione di emazie per concentrazioni di emoglobina più elevate rispetto a questa soglia non dà vantaggi in termini di mortalità a breve o lungo termine, durata della degenza o disfunzioni d'organo (2-6).

La risposta alla domanda iniziale sembra quindi chiara ... ma se riflettiamo bene questa risposta ci dice come risparmiare emoderivatinon quando la trasfusione di emazie apporta un beneficio al paziente.

Come sempre la qualità della risposta dipende dalla qualità della domanda: visto l'esito della risposta, probabilmente non è una buona domanda chiedersi quale sia il valore giusto di concentrazione dell’emoglobina per decidere una trasfusione.

La fisiologia ci aiuterà a capire quale possa essere la “domanda giusta” per trasfondere emazie con un beneficio clinico. Successivamente cercheremo la risposta a questa domanda nei dati che possiamo trovare nella ricerca clinica.

Guida fisiologica alla "domanda giusta".

Trasporto e consumo di ossigeno.

Fisiologicamente un soggetto a riposo consuma circa 250 ml di O2 ogni minuto ($\dot{V}O_2$). Il $\dot{V}O_2$ è garantito dal trasporto di ossigeno ai tessuti (oxygen delivery, DO2), un magnifico lavoro di squadra degli apparati respiratorio e cardiocircolatorio: il primo ”carica” il sangue di ossigeno, il secondo lo fa arrivare ai tessuti. Il DO2 è il prodotto del contenuto di ossigeno del sangue arterioso (CaO2) e della portata cardiaca (cardiac output, CO): 
$$DO_2= CaO_2 \cdot CO~~~(eq.~1)$$ 
Per capire il ruolo dell'emoglobina in questo processo, calcoliamo ora quanto dovrebbe essere la portata cardiaca per garantire un trasporto di ossigeno esattamente uguale al consumo di ossigeno fisiologico, cioè 250 ml di O2/min, se non vi fosse l’emoglobina. E’ una condizione ovviamente paradossale, ma ci aiuta a ragionare in maniera quantitativa sui fenomeni su cui vogliamo riflettere. La quantità di ossigeno in soluzione nel sangue arterioso è direttamente proporzionale alla sua pressione parziale (PaO2). Il coefficiente di solubilità dell’ossigeno a 37°C è 0.0031 ml O2⋅dL-1∙ mmHg-1, cioè ogni mmHg di PaOincrementa il CaOdi 0.0031 ml in 100 ml di sangue. Con una normale funzione polmonare la PaOè circa 95 mmHg. Il CaO2 in assenza di emoglobina sarebbe (arrotondato al primo decimale): 
 $$ CaO_2 = 95~mmHg \cdot 0.0031 \frac{ml~O_2}{mmHg \cdot 100~ml} = \\ = 0.3~ml~O_2/100~ml~~~(eq.~2)$$
In assenza di emoglobina questo sarebbe il contenuto di O2 del sangue arterioso con normale ossigenazione: meno di 1/3 di ml di O2, davvero pochissimo. 
Dal CaO2 calcoliamo la portata cardiaca necessaria per trasportare esattamente 250 ml di O2 ogni minuto. Possiamo riscrivere l’equazione 1 come segue:
$$ CO = \frac{DO_2}{CaO_2} ~~~(eq.~3)$$
Se si vuole raggiungere un DO2 di 250 ml di O2/min, esattamente uguale al $\dot{V}O_2$, l’equazione diventa:
$$CO = \cfrac{250 \cfrac{ml~O_2}{min}}{0.3 \cfrac{ml~O2}{100~ ml}} = \\ = 833 \cdot 100~ml/min = \\ =83300~ ml/min = 83.3~l/min~~~(eq.~4)$$
In assenza di emoglobina servirebbe una portata cardiaca di almeno 83 l/min per garantire l’apporto fisiologico di 250 ml/min di O2 ai tessuti. In altre parole, in assenza di emoglobina un elevatissimo CO dovrebbe sopperire al bassissimo CaO2.

Per fortuna abbiamo l’emoglobina, che aumenta enormemente il CaO2 legando a sè moltissimo ossigeno, il quale si va ad aggiungere all'ossigeno disciolto nel sangue. Ogni grammo di emoglobina può legare un massimo di 1.39 ml di O2 se tutti i siti di legame per l’O2 sono occupati da una molecola di ossigeno. Questa è la condizione che conosciamo come saturazione 100%. Tanto più elevata è la PaO2, tanto maggiore è la saturazione dell’emoglobina, con una relazione espressa dalla ben nota curva di dissociazione dell’emoglobina.


Una PaO2 di 95 mmHg fisiologicamente si associa ad una saturazione del 97%, che significa che il 97% dei siti di legame dell’emoglobina per l’ossigeno sono legati ad una molecola di O2.
In questa condizione il CaO2 con una ipotetica concentrazione di emoglobina di 10 g/dL diventerebbe: 
$$CaO_2 = 95~mmHg \cdot 0.0031~ml~O_2/mmHg +\\ + 10~g/100~ml \cdot 1.39~ml~O_2/g \cdot SaO_2/100 = \\ = 0.3~ml~O_2 + 13.5~ml~O_2 = 13.8~ml~O_2~~~(eq.~5) $$ 
Grazie a questa quantità di emoglobina il CaO2 è aumentato di ben 46 volte (da 0.3 a 13.8 ml O2/100 ml). Ora la portata cardiaca necessaria per assicurare il trasporto dei 250 ml di O2/min si è ridotta di 46 volte: $$CO = \cfrac{250 \cfrac{ml~O_2}{min}}{13.8 \cfrac{ml~O_2}{100~ml}} = \\ = 18.12 \cdot 100~ml/min = 1812~ml/min = \\ = 1.81~l/min~~~(eq.~6)$$ 

Estrazione di ossigeno.

La portata cardiaca fisiologica è più del triplo di questo valore (circa 5.6 l/min), questo consente all’organismo di trasportare oltre il triplo dell’ossigeno necessario alle necessità del metabolismo cellulare. Riprendendo l'equazione 1: 
 $$DO2 = CO \cdot CaO_2 = 5.6~l/min \cdot 13.8~ml~O_2/100~ml = \\ = 5.6~l/min \cdot 138~ml~O_2/l = 773~ml~O_2/min~~~(eq.~7)$$ L'estrazione di ossigeno (O2 extraction ratio, O2ER) esprime la proporzione  dell'ossigeno trasportato che viene utilizzato dal metabolismo tissutale, cioè il rapporto tra $\dot{V}O_2$ e DO2: $$O_2ER = \dot{V}O_2/DO_2 = \cfrac{250~ml/min}{773~ml/min} = 0.32~~~(eq.~8)$$ 
Il O2ER può essere assimilato alla proporzione tra le nostre spese ed il nostro reddito. Se questo indicatore aumenta, ci avviciniamo alla condizione in cui avremo bisogno di fare debiti; se invece diminuisce ci dice che possiamo o risparmiare o aumentare le spese. Parimenti il O2ER che aumenta ci avvicina alla condizione del debito di ossigeno, che si ritiene si verifichi quando supera il valore di 0.5-0.6 (7, 8), mentre se si riduce al di sotto del fisiologico valore di 0.25-0.3 indica una disponibilità di ossigeno superiore al normale. 
Ipotizziamo ora che l’emoglobina scenda 7 g/dL, a parità di CO (5.6 l/min) e $\dot{V}O_2$ (250 mlO2/min). Ripetendo i calcoli precedenti, la O2ER aumenta a 0.46, un dato decisamente elevato, che si avvicina alla soglia del debito di ossigeno. In questo caso l’anemia produce una significativa riduzione del trasporto di ossigeno.

Ma se la riduzione dell’emoglobina a 7 g/dL fosse associata al contemporaneo aumento del CO da 5.6 a 6.7 l/min e riduzione del $\dot{V}O_2$ a 210 ml/min (dati ragionevoli per un paziente in Terapia Intensiva), la O2ER sarebbe 0.32, invariata rispetto alla condizione con 10 g/dL di emoglobina. In questo caso l’anemia non avrebbe prodotto una riduzione del trasporto di ossigeno.

Da questi due esempi possiamo capire l'importanza del O2ER nel contribuire in maniera fondamentale alla decisione di trasfondere o meno emazie. Nel primo caso potremmo trasfondere il paziente per aumentare il DO2 ed allontanarlo dalla soglia del debito di ossigeno, nel secondo caso invece la trasfusione apparirebbe inutile da questo punto di vista.

Vediamo infine un ultimo esempio in cui la valutazione del O2ER ci può suggerire di trasfondere emazie anche con un’emoglobina di 10 g/dL. Se un paziente avesse un aumento del $\dot{V}O_2$ a 300 ml/min ed una portata cardiaca ridotta a 4.5 l/min 
(anche questi dati ragionevoli per un paziente in Terapia Intensiva), la O2ER sarebbe 0.48 nonostante l’emoglobina a 10 g/dL: a questo valore di O2ER potrebbe avere un razionale la trasfusione di emazie (soprattutto se non fosse possibile ridurre il $\dot{V}O_2$ o aumentare il CO).

La risposta alla "domanda giusta": come misurare il O2ER con l'emogasanalisi.

La strada più lunga.

Finora abbiamo ragionato partendo dalla conoscenza dei valori di CO e $\dot{V}O_2$, dati spesso non sono disponibili nella pratica clinica. Per fortuna al letto del paziente possiamo calcolare la O2ER in maniera semplice, senza necessariamente avere a disposizione CO e $\dot{V}O_2$.

Il $\dot{V}O_2$ è uguale alla differenza tra l’ossigeno che viene trasportato dal sangue arterioso ai tessuti (cioè il buon DO2) e l’ossigeno che torna al cuore destro dopo aver ceduto ossigeno ai tessuti. Quest’ultimo, in analogia al DO2, è calcolabile come prodotto tra la portata cardiaca ed il contenuto venoso di O2 (CvO2). Per misurare il CvO2 si dovrebbe analizzare il venoso misto ottenuto dall’arteria polmonare, ma di fatto più spesso viene utilizzato un campione di sangue ottenuto da una vena centrale, più frequentemente disponibile:$$\dot{V}O_2 = CaO_2 \cdot CO - CvO_2 \cdot CO = \\ = (CaO_2 - CvO_2) \cdot CO ~~~(eq.~9)$$ La differenza CaO- CvO2 è conosciuta anche come differenza artero-venosa di O2 (Ca-vO2). Utilizzando il $\dot{V}O_2$ ricavato dall'equazione 9, abbiamo gli strumenti per capire come calcolare O2ER dai dati dell’emogasanalisi arteriosa e venosa: $$O_2ER = \dot{V}O_2/DO_2 = \\ = \cfrac{(CaO_2 - CvO_2) \cdot CO}{CaO_2 \cdot CO} = \\ = \cfrac{CaO_2 - CvO_2}{CaO2}~~~(eq.~10)$$ Ipotizziamo di avere un paziente con 10 g/dL di emoglobina, PaO2 95 mmHg, SaO2 97%, SvO2 67% e PvO2 di 36 mmHg e calcoliamo il suo O2ER: $$O_2ER= (CaO_2 - CvO_2)/CaO_2 = \\ = \cfrac{(Hgb \cdot 1,39 \cdot SaO_2 + 0.0031 \cdot PaO_2) - (Hgb \cdot 1,39 \cdot SvO_2 + 0.0031 \cdot PvO_2)}{Hgb \cdot 1,39 \cdot SaO_2 + 0.0031 \cdot PaO_2} = \\ = (13.8 - 9.4)/13.8 = 0.32~~~(eq.~11)$$ 
Lo stesso risultato dell’equazione 8: niente di sorprendente perché stiamo analizzando lo stesso paziente utilizzando le sue emogasanalisi anziché il suo DO2 e  $\dot{V}O_2$.

La strada più breve.

Dal momento che la quota di O2 disciolto nel sangue è trascurabile, possiamo efficacemente semplificare l’equazione 11 ed ottenere un O2ER in maniera molto facile:
$$O_2ER = \cfrac{(Hgb \cdot 1,39 \cdot SaO_2) - (Hgb \cdot 1,39 \cdot SvO_2)}{Hgb \cdot 1,39 \cdot SaO_2} = \\ = \cfrac{(SaO_2 -SvO_2) \cdot 1,39 \cdot Hgb}{Hgb \cdot 1,39 \cdot SaO_2} = \\ = \cfrac{SaO_2 - SvO_2}{SaO_2} = 0.32~~~(eq.~12)$$ 
Semplificando ulteriormente, l’equazione 12 mostra che, se la SaO2 è 100%, la SvO2  è inversamente proporzionale al O2ER. Infatti:
$$O_2ER = \cfrac{SaO_2 - SvO_2}{SaO_2} = \\ = \cfrac{SaO_2}{SaO_2} - \cfrac{SvO_2}{SaO_2} = \\ = \cfrac{100}{100} - \cfrac{SvO_2}{100} = \\ = 1 - SvO_2/100~~~(eq.~13)$$ 
Con SaO2 di 100%, una ridotta SvO2 significa una elevata estrazione di ossigeno. Se la SaO2 non è proprio 100% ma è molto vicina a questo valore ci si sbaglia di poco. Tanto più la SaO2 diminuisce, tanto meno la SvO2 è un buon surrogato del O2ER.

Gli studi clinici.

La fisiologia ci fa capire che la trasfusione di emazie dovrebbe avere l'obiettivo di adeguare la DO2 al $\dot{V}O_2$, ed il O2ER è l'indicatore più appropriato. La concentrazione dell’emoglobina, quella che solitamente si guarda per decidere se trasfondere emazie, dovrebbe essere invece un elemento secondario alla valutazione del O2ER.

Uno studio clinico fornisce una indiretta conferma a questo ragionamento fisiologico (9). Lo studio ha analizzato 177 pazienti in Terapia Intensiva con emoglobina tra 7 e 10 g/dL. Questi pazienti anemici potevano essere trasfusi o non trasfusi a giudizio del medico curante. In tutti i pazienti, indipendentemente dalla decisione di trasfondere emazie, furono calcolati sia il Ca-vO2 (la differenza artero-venosa di contenuto di ossigeno) sia il O2ER
Successivamente è stata classificata l'appropriatezza della scelta di trasfondere o di non trasfondere i pazienti sulla base del O2ER. I pazienti sono stati definiti attribuiti al gruppo con "appropriata strategia trasfusionale" se o è stata fatta una trasfusione in presenza di O2ER ≥ 30 o se non è stata fatta la trasfusione con O2ER < 30
Il gruppo con "inappropriata strategia trasfusionale" invece era costituito dai soggetti che o avevano ricevuto una trasfusione di emazie con O2ER < 30 o non erano stati trasfusi nonostante una O2ER ≥ 30
Il risultato è stato che una così definita "appropriata strategia trasfusionale" era indipendentemente associata ad una riduzione della mortalità a 90 giorni. L’analisi principale dello studio non era fatta sulla O2ER ma sulla Ca-vO2 (che è il numeratore della O2ER e quindi considerato un suo surrogato). Anche utilizzando la Ca-vO2 per definire la strategia trasfusionale appropriata (con un cut-off di 3.7 ml O2/100 ml), il risultato non cambiava: la "appropriata strategia trasfusionale" si confermava indipendentemente associata ad una minor mortalità a 90 giorni. 
Inoltre la "appropriata strategia trasfusionale" si associava anche una più rapida riduzione del SOFA score rispetto a quanto accadeva nei pazienti con "inappropriata strategia trasfusionale".

Altre due studi osservazionali hanno rilevato che il O2ER si riduce dopo trasfusione nei pazienti con O2ER pre-trasfusione > 30 (nessuna variazione nei pazienti con O2ER pre-trasfusione ≤ 30)  (10) e che la SvO2 aumenta dopo trasfusione nei pazienti con SvO2 pre-trasfusione < 70% (nessuna variazione nei pazienti con SvO2 pre-trasfusione ≥ 70) (11).

Conclusioni.

Concludiamo questo lungo post sintetizzando in pochi punti quello che potrebbe essere un approccio ragionevole alla trasfusione di emazie:
  • l'emotrasfusione dovrebbe essere presa in considerazione in tutti i pazienti anemici. La soglia dell'anemia è arbitraria ma possiamo porla orientativamente a 10 g/dL di emoglobina;
  • nei pazienti anemici si dovrebbe valutare il O2ER, calcolato facilmente come (SaO2-SvO2)/SaO2;
  • un O2ER < 0.3 dovrebbe avvalorare la decisione di non trasfondere, anche se l'emoglobina fosse un po' inferiore a 7 g/dL;
  • un O2ER > 0.3:
    • supporterebbe l'indicazione alla trasfusione come primo intervento terapeutico in caso di anemia grave (arbitrariamente definita con un valore di emoglobina inferiore a 7 g/dL);
    • nei pazienti con anemia moderata (emoglobina superiore a 7 g/dL) la trasfusione di emazie sarebbe comunque indicata dopo una ragionevole ottimizzazione di portata cardiaca e consumo di ossigeno.
Anche se la soglia del O2ER sembra più appropriata di quella dell'emoglobina, la decisione di trasfondere emazie non dovrebbe essere limitata ad essa ma dovrebbe tenere conto di tutti i dati clinici, laboratoristici e strumentali a disposizione, come sempre dovrebbe essere nella buona pratica medica. Speriamo che la mania dei numeri magici abbia vita breve (anche se temo il contrario...).

Grazie per l'attenzione e, come sempre, un sorriso a tutti gli amici di ventilab


Bibliografia

1.     Mueller MM, Van Remoortel H, Meybohm P, et al.: Patient Blood Management: Recommendations From the 2018 Frankfurt Consensus Conference. JAMA 2019; 321:983–997
2.     Carson JL, Stanworth SJ, Dennis JA, et al.: Transfusion thresholds for guiding red blood cell transfusion. Cochrane Database Syst Rev 2021; 12:CD002042
3.     Zhang Y, Xu Z, Huang Y, et al.: Restrictive vs. liberal red blood cell transfusion strategy in patients with acute myocardial infarction and anemia: a systematic review and meta-analysis. Front Cardiovasc Med 2021; 8:736163
4.     Yao R, Ren C, Zhang Z, et al.: Is haemoglobin below 7.0 g/dL an optimal trigger for allogenic red blood cell transfusion in patients admitted to intensive care units? A meta-analysis and systematic review. BMJ Open 2020; 10:e030854
5.     Kranenburg FJ, Arbous SM, Caram‐Deelder C, et al.: Predicting organ functioning with and without blood transfusion in critically ill patients with anemia. Transfusion (Paris) 2022; 62:1527–1536
6.     Bosch NA, Law AC, Bor J, et al.: Red Blood Cell Transfusion at a Hemoglobin Threshold of 7 g/dl in Critically Ill Patients: A Regression Discontinuity Study. Ann Am Thorac Soc 2022; 19:8
7.     Leach RM: The pulmonary physician in critical care 2: Oxygen delivery and consumption in the critically ill. Thorax 2002; 57:170–177
8.     Walley KR: Use of central venous oxygen saturation to guide therapy. Am J Respir Crit Care Med 2011; 184:514–520
9.     Fogagnolo A, Taccone FS, Vincent JL, et al.: Using arterial-venous oxygen difference to guide red blood cell transfusion strategy. Crit Care 2020; 24:160
10.     Orlov D, O’Farrell R, McCluskey SA, et al.: The clinical utility of an index of global oxygenation for guiding red blood cell transfusion in cardiac surgery. Transfusion (Paris) 2009; 49:682–688
11.     Themelin N, Biston P, Massart J, et al.: Effects of red blood cell transfusion on global oxygenation in anemic critically ill patients. Transfusion (Paris) 2021; 61:1071–1079

Read more ...