Asincronie paziente-ventilatore: il doppio trigger.

26 dic 2014

Nei post del 22/09/2014 e del 18/10/2014 abbiamo descritto ed imparato a riconoscere tre asincronie paziente-ventilatore: sforzo inefficace, autociclaggio e doppio trigger.

Ora cerchiamo di capire come comportarci di fronte ad esse. Iniziamo con il doppio trigger (double triggering).

Le cause del doppio trigger.

Ricordiamo che il doppio trigger è identificato da due inspirazioni separate da una espirazione molto breve (inferiore alla metà, circa, del tempo inspiratorio medio) (1). Si è soliti interpretare il doppio trigger come una doppia attivazione del trigger inspiratorio con un unico atto inspiratorio dei muscoli respiratori del paziente (1-4), come possiamo vedere nella figura 1.


Figura 1.

La fascia azzurra identifica la durata di una contrazione diaframmatica (traccia in basso, porzione in salita della depolarizzazione diaframmatica). Possiamo vedere che in questo periodo ci sono due segni di attivazione del trigger (curva di pressione in alto) che innescano due inspirazioni separate da una espirazione molto breve (curva di flusso in mezzo).

Questa spiegazione del doppio trigger (che è quella “ufficiale”) potrebbe essere vera solo in alcuni casi. Cercherò ora di spiegare il perchè.

Il doppio trigger è molto frequente in ventilazione assitita-controllata e quasi assente in pressione di supporto, dove lo si osserva solo in caso di trigger espiratorio molto precoce (45% del picco di flusso) (1-5). Addirittura il passaggio da ventilazione assistita-controllata a pressione di supporto è spesso sufficiente a far scomparire il doppio trigger (6). Dobbiamo quindi prendere atto che il doppio trigger è tipico delle ventilazioni che prevedono atti controllati. L’interpretazione “ufficiale” del doppio trigger può essere certamente compatibile con la ventilazione assistita-controllata se il primo atto del doppio trigger è triggerato dal paziente e se il tempo inspiratorio è troppo breve o il volume impostato è troppo basso (1-7). Osserviamo attentamente nella figura 2 il grafico utilizzato per descrivere il doppio trigger nello studio che per primo lo ha definito in maniera precisa, lo ha ricercato in maniera sistematica ed al quale gli studi successivi fanno riferimento (1).



Figura 2.

La ventilazione utilizzata è sicuramente una assitita-controllata volumetrica e sembra piuttosto evidente che quando si verifica un doppio trigger (indicato dalla freccia sulla curva di flusso), il primo respiro della “doppietta” non presenta alcun segno di attivazione del trigger sulla curva di pressione (in basso). Ed è molto interessante notare che i doppi trigger sembrino presentarsi con un pattern regolare (sono intervallati da 3 cicli respiratori “normali”): ricordiamoci questo dettaglio, lo rivedremo più avanti.

Nella figura 2 abbiamo quindi visto il primo dei due respiri del doppio trigger non triggerato dal paziente: in questo caso sarebbe più corretto parlare di “doppio respiro” piuttosto che di “doppio trigger“, come peraltro veniva fatto in uno dei primi studi su questo fenomeno (2). La maggior parte dei doppi trigger presenta questa caratteristica: il primo respiro non è triggerato. Solo in circa un terzo dei casi il “doppio respiro” è effettivamente un “doppio trigger” perchè entrambi i respiri della “doppietta” sono triggerati dal paziente (5). A mio parere solo in questi casi si può interpretare il doppio trigger alla luce della spiegazione “ufficiale” presentata all’inizio.

Per gli altri casi esiste una spiegazione alternativa: il “reverse triggering“. E’ noto che anche in soggetti sani sottoposti a ventilazione meccanica il ritmo respiratorio spontaneo può resettarsi sul ritmo delle insufflazioni meccaniche (8). Il ritmo del ventilatore meccanico diventa una sorta di pace-maker per i centri respiratori del paziente, che si adeguano al ritmo delle insufflazioni e lo seguono: è il ventilatore che triggera il paziente e non viceversa! La conseguenza è che si osserva prima l’insufflazione meccanica e subito dopo la depolarizzazione diaframmatica, e questo con un ritmo regolare (figura 3).



Figura 3.

Il ritmo regolare può essere 1:1 (ciascun respiro del ventilatore “traina” un respiro del paziente) o anche 1:2, 1:3, 1:4 (un respiro del paziente è innescato regolarmente ogni 2, 3 o 4 insufflazioni meccaniche).

Questo evento è stato osservato anche in pazienti con ARDS sottoposti a sedazione ed è stato definito “reverse triggering” (trigger inverso) (9). Vediamo un esempio nella figura 4.



Figura 4.

Possiamo vedere che l’inizio della contrazione diaframmatica (indicato dalle linee verticali tratteggiate che segnano l’inizio della depolarizzazione del diaframma sulla curva EAdi) segue regolarmente ogni insufflazione meccanica (quindi abbiamo un ritmo 1:1), dando segno di sè sia sulla traccia di flusso (in alto) come incremento del flusso decrescente che sulla traccia di pressione (in mezzo) come piccola riduzione della pressione delle vie aeree.

Analizziamo ora la figura 5:



Figura 5.

In questo caso la traccia in basso è la pressione esofagea e l’inizio dell’inspirazione del paziente è individuato dall’inizio della sua deflessione verso il basso (linee trattegiate verticali). Possiamo notare che la deflessione esofagea segue sempre l’insufflazione meccanica (in questo caso con un pattern 1:2) e che la conseguenza è sempre un doppio trigger (traccia di flusso in alto) con il primo dei respiri della “doppietta” non triggerato. Ricorda molto l’immagine della figura 2, nella quale potremmo individuare un ritmo 1:4.

Un ultima causa di doppio trigger può essere un autociclaggio sul secondo respiro della “doppietta”, come nel caso che abbiamo discusso nel post del 18/10/2014, in cui il doppio trigger era costituito da un atto triggerato seguito da un atto autociclato. In questo caso però l’asincronia “madre” è l’autociclaggio e non il doppio trigger.

I possibili problemi causati dal doppio trigger.

I problemi che il doppio trigger può provocare sono tre: 1) il discomfort del paziente, 2) l’aumento del volume corrente e 3) la creazione di auto-PEEP (o PEEP intrinseca).

L’aumento del volume corrente è dovuto al fatto che il volume del secondo respiro si somma a quello del primo che è stato espirato solo in piccola parte. Nei pazienti con ARDS con volume corrente impostato di 6 ml/kg (di peso ideale), la presenza di doppio trigger il volume corrente realmente erogato diventa di 10 ml/kg (di peso ideale) (7). L’aumento del volume corrente può comportare un aumento della auto-PEEP, soprattutto se la frequenza respiratoria è piuttosto elevata, con l’aumento del carico soglia e la possibilità di successivi sforzi inefficaci.

E’ evidente che se il doppio trigger è sporadico non rappresenta di per sè un pericolo per il paziente, ma può essere la spia di una scorretta impostazione del ventilatore meccanico. Quindi in presenza di doppio trigger abbiamo il dovere di verificare di se abbiamo impostato correttamente il ventilatore (vedi il prossimo paragrafo).

Come eliminare il doppio trigger.

La soluzione è (come sempre) in un’adeguata impostazione del ventilatore per arrivare a questa è necessario comprendere correttamente la causa del doppio trigger: la soluzione sarà diversa nei due tipi di doppio trigger.

Infatti se il primo dei due respiri è triggerato dal paziente, penso che l’interpretazione “ufficiale” sia corretta: il paziente ha iniziato l’inspirazione, il ventilatore cicla in espirazione prima che il paziente sia soddisfatto dell’inspirazione ottenuta. Se siamo in ventilazione assistita-controllata, dobbamo aumentare il tempo inspiratorio (che in questi casi dovrebbe essere circa 0.8-1″) e aumentare il volume corrente impostato (7). Il passaggio dalla ventilazione assistita-controllata alla pressione di supporto potrebbe da solo risolvere il problema. Se invece abbiamo questo tipo di doppio trigger in pressione di supporto, dovremo diminuire il trigger espiratorio (portandolo ad esempio al 10-20%), eventualmente anche aumentando di qualche cmH2O la pressione di supporto.

Quando il primo dei due respiri del doppio trigger non è triggerato dal paziente, dobbiamo invece considerare il reverse triggering come causa del doppio trigger. In questo caso la durata dell’inspirazione non c’entra nulla. Abbiamo due possibilità per risolverlo: aumentare o ridurre la frequenza respiratoria impostata (9). L’incremento della frequenza respiratoria determina la progressiva scomparsa dell’attività neurale del paziente e quindi l’abolizione dell’attività della sua muscolatura inspiratoria: il paziente si lascia comandare la macchina e si mette a riposo. La riduzione della frequenza respiratoria invece determina il prevalere della frequenza neurale del paziente su quella impostata sul ventilatore e l’effetto la scomparsa degli atti meccanci e la permanenza dei soli atti triggerati: al contrario della scelta precendente, in questo caso si lascia comandare la ventilazione al paziente ed il ventilatore si limita a seguirlo (si fa quindi una vera ventilazione assistita-controllata). La scelta tra le due opzioni dipende ovviamente dal contesto clinico: se siamo in “fase weaning”, privilegerei la seconda, se siamo in “fase ARDS grave” invece sceglierei la prima.

Infine, se ci accorgiamo che il primo atto è triggerato ed il secondo è autociclato, dovremo risolvere l’autociclaggio (ma di questo parleremo in un prossimo post).

Conclusioni

Ecco i punti salienti del post:
1) quando vediamo un doppio trigger, dobbiamo osservare se il primo dei due atti respiratori è triggerato (piccola incisura verso il basso che precede l’insufflazione sulla curva di pressione).
2) se il primo respiro del doppio trigger è triggerato, in ventilazione assistita-controllata dobbiamo aumentare il tempo inspiratorio ed il volume corrente impostato; oppure scegliere una pressione di supporto con un basso livello di trigger espiratorio;
3) se il primo respiro del doppio trigger non è triggerato, possiamo aumentare la frequenza respiratoria (se vogliamo sottomettere il paziente al ventilatore) o ridurre la frequenza respiratoria (se vogliamo dare il comando della ventilazione al paziente).

Come sempre, un sorriso a tutti gli amici di ventilab. E tanti auguri di buone feste e di un felice 2015!

Bibliografia.
1) Thille AW et al. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med 2006; 32:1515-22
2) Tokioka H et al. The effect of breath termination criterion on breathing patterns and the work of breathing during pressure support ventilation. Anesth Analg 2001; 92:161-5
3) Colombo D et al. Efficacy of ventilator waveforms observation in detecting patient–ventilator asynchrony. Crit Care Med 2011; 39: 2452-7
4) Piquilloud L et al. Neurally adjusted ventilatory assist improves patient–ventilator interaction.Intensive Care Med 2011; 37:263-71
5) Liao K et al. Classifying different types of double triggering based on airway pressure and flow deflection in mechanically ventilated patients. Respir Care 2011; 56:460-6
6) Chanques G et al. Impact of ventilator adjustment and sedation-analgesia practices on severe asynchrony in patients ventilated in assist-control mode. Crit Care Med 2013; 41:2177-87
7) Pohlman MC et al. Excessive tidal volume from breath stacking during lung-protective ventilation for acute lung injury. Crit Care Med 2008; 36:3019-23
8) Simon PM et al. Entrainment of respiration in humans by periodic lung inflations: effect of state and CO2. Am J Respir Crit Care Med 1999;160:950-60
9) Akoumianaki E et al. Mechanical ventilation-induced reverse-triggered breaths a frequently unrecognized form of neuromechanical coupling. Chest 2013; 143:927-38

Read more ...

BIPAP e ventilazione non invasiva: un po' di luce su un rapporto ambiguo.

29 nov 2014


Spesso mi vengono poste domande sulle “modalità di ventilazione non invasiva“. A mio parere non esistono “modalità di ventilazione non invasiva” ma solo “modalità di ventilazione meccanica“. Quando si dice “ventilazione non invasiva” deve essere chiaro che il termine “non invasiva” è solo un attributo del sostantivo “ventilazione”. “Non invasiva” vuol dire semplicemente che si collega il ventilatore all’apparato respiratorio con strumenti esterni alle vie aeree (maschere, caschi) invece che con strumenti interni alle vie aeree (tubi tracheali).

Se ci si limita a collegare l’apparato respiratorio al ventilatore (in maniera invasiva o non invasiva) non si è ancora fatto nulla: si tratta l’insufficienza respiratoria solo quando si comincia a VENTILARE. E le modalità di ventilazione sono uguali nella ventilazione invasiva ed in quella non invasiva. In entrambi i casi possiamo utilizzare (teoricamente) volume controllato, pressione controllata, pressione di supporto, SIMV, NAVA, BIPAP, CPAP, PRVC, PAV…

L’interfaccia non invasiva è utile solo se consente di erogare una buona ventilazione, altrimenti può diventare una trappola mortale. E’ indispensabile ricordare che l’obiettivo (nostro e, soprattutto, del paziente) è la VENTILAZIONE: ogni volta che la ventilazione con un’interfaccia non invasiva non è appropriata, la ventilazione non invasiva deve rapidamente essere abbandonata per l’intubazione tracheale. Meglio una buona VENTILAZIONE invasiva di una brutta VENTILAZIONE non invasiva.

Il vantaggio della non invasività è principalmente quello di VENTILARE quei soggetti in cui le complicazioni dell’invasività superano i benefici della VENTILAZIONE. Questi soggetti sono in primo luogo quelli con insufficienza respiratoria lieve-moderata, una condizione che in cui le complicanze dell’intubazione possono essere superiori ai benefici della ventilazione.

Da queste premesse deriva che bisogna conoscere come funzionano le modalità di VENTILAZIONE sia che si utilizzi la VENTILAZIONE invasiva sia che si utilizzi quella non invasiva.

Un primo problema quando si utilizzano i ventilatori meccanici può essere quello di districarsi nella giungla di sigle che a sproposito designano le modalità di ventilazione: spesso denominazioni diverse indicano la medesima ventilazione, altre volte la stessa definizione è applicata a ventilazioni diverse tra loro.

Oggi cerchiamo di fare chiarezza su una modalità di ventilazione che volte genera ambiguità: la ventilazione BIPAP.

La Biphasic Positive Airway Pressure (BIPAP) è una modalità di ventilazione che nasce nella seconda metà degli anni ’80 (1) ed è caratterizzata dall’applicazione bifasica (cioè su due differenti livelli) della pressione positiva continua delle vie aeree. La confusione sulla BIPAP inizia nei primi anni ’90, quando la Respironics negli Stati Uniti brevetta il marchio BiPAP® (con la “i” minuscola) e lo utilizza come nome per il proprio ventilatore monotubo da ventilazione non invasiva. La BiPAP® ottiene (meritatamente) un grande successo e diventa il pioniere della moderna ventilazione non invasiva nella pratica clinica. Da quel momento BiPAP® diventa simbolo e (purtroppo) sinonimo di ventilazione non invasiva, e trascina nel caos anche la ventilazione BIPAP che spesso viene confusa con la BiPAP®. Ancora più beffardo il fatto che il ventilatore BiPAP® non abbia tra le sue modalità di ventilazione la BIPAP (cioè la Biphasic Positive Airway Pressure): infatti la modalità di ventilazione BiPAP® S è semplicemente una pressione di supporto, mentre la BiPAP® S/T è una pressione di supporto con una pressione controlata di sottofondo che si attiva se la frequenza respiratoria del paziente diventa inferiore di quella impostata (in pratica funziona come una pressione controllata/assistita con gli atti spontanei ciclati a flusso e quelli temporizzati ciclati a tempo)

Oggi ci dedichiamo a chiarire come funziona la BIPAP, che può essere applicata sia attraverso un’interfaccia invasiva che una non invasiva (come tutte le modalità di ventilazione convenzionali). I ventilatori meccanici chiamano la BIPAP in modi diversi (BIPAP, Bi-Vent, BiLevel, BiPhasic, DuoPAP), ma fanno tutti la stessa cosa.

Nella BIPAP si impostano due differenti livelli di pressione che funzionano come due differenti livelli di CPAP. La CPAP è una modalità in cui il paziente respira spontaneamente con una pressione positiva continua nelle vie aeree. Ciò significa che il flusso inspiratorio non si associa all’aumento della pressione delle vie aeree, come avviene quando l’atto inspiratorio è supportato dal ventilatore. Nella BIPAP quindi il paziente respira spontaneamente come nella CPAP, ma ha due livelli, e non uno solo come nella CPAP, di pressione positiva continua ne che si alternano ritmicamente (vedi figura 1, pressione delle vie aeree in giallo, flusso in verde). Per poter impostare una BIPAP sono quindi indispensabili 4 comandi: un livello di pressione “bassa” (Pbassa), un livello di pressione “alta” (Palta), una durata della Pbassa (T-Pbassa) ed una durata della Palta (T-Palta).



Figura 1.

La BIPAP non è solamente una ventilazione spontanea poichè il paziente riceve, inevitabilmente, un’insufflazione quando la pressione passa da Pbassa a Palta (figura 2, inspirazione nel respiro 3), come avviene tutte le volte che aumenta la pressione delle vie aeree durante la ventilazione meccanica. Ed altrettanto inevitabilmente il paziente espira una parte del proprio volume polmonare nel passaggio da Palta a Pbassa (figura 2, espirazione del respiro 4: come si vede il flusso espiratorio è maggiore rispetto a quello delle altre espirazioni).

Figura 2.

Quindi la BIPAP è una combinazione tra una ventilazione controllata pressometrica (legata all’alternarsi di Pbassa e Palta) ed una ventilazione spontanea, con atti respiratori spontanei liberamente eseguibili sia durante Pbassa che durante Palta. Nella figura 2 vediamo che le inspirazioni spontanee durante Pbassa sono la 1, 2, 5 e 6, mentre l’inspirazione spontanea 4 avviene durante Palta. L’inspirazione 3 invece è l’unica assistita dal ventilatore, come si evince dal chiaro aumento della pressione delle vie aeree che si associa ad essa.

Se il paziente diventa passivo, ha assicurata una ventilazione che è a tutti gli effetti una ventilazione a pressione controllata: la Pbassa diventa la PEEP e la differenza tra Palta e Pbassa costituisce il livello di pressione controllata. Il tempo T-Palta diventa il tempo inspiratorio, mentre il tempo T-Pbassa rappresenta il tempo espiratorio. Un ciclo respiratorio completo ha quindi come durata la somma di T-Palta e T-Pbassa e la frequenza respiratoria diventa uguale a 60/(T-Palta+T-Pbassa). Se imposto T-Palta di 1,5″ e T-Pbassa di 2,5″, quale sarà la frequenza respiratoria?

Se il paziente diventa attivo, la BIPAP diventa ben diversa dalla pressione controllata. In pressione controllata ogni tentativo (efficace) di inspirazione del paziente attiva un nuovo atto controllato (quindi l’aumento della pressione delle vie aeree al livello impostato per la durata del tempo inspiratorio) (figura 3). Qui si vede chiaramente che l’attivazione del trigger (ben identificata dal cerchio bianco) innesca ogni volta un atto con assistenza inspiratoria (=con aumento della pressione nelle vie aeree).

Figura 3.

Durante la BIPAP invece l’inspirazione spontanea durante Pbassa, non triggera alcun atto controllato, ma diventa solamente un atto respiratorio spontaneo aggiuntivo che inframmezza il ritmo dei cambi di pressione (come già visto in figura 2). Questa è una caratteristica condivisa con la SIMV: respiri controllati alternati a respiri spontanei. Bisogna comunque sapere che molti ventilatori lasciano una finestra di sincronizzazione tra attività respiratoria del paziente e cicli della BIPAP: se un paziente inspira in prossimità del passaggio da Pbassa a Palta, il ventilatore anticipa e sincronizza questo passaggio con la attività inspiratoria spontanea, di fatto riproducendo quanto normalmente avviene durante la ventilazione a pressione controllata.

La vera peculiarità della BIPAP si manifesta quando si ha attività inspiratoria o espiratoria spontanea durante la Palta: per la BIPAP questa non è un’asincronia, ma semplicemete un respiro del paziente ad uno dei livelli di CPAP. Vediamo cosa significa in pratica osservando la figura 4.

Figura 4.

In questa figura vediamo un aumento di pressione in PCV ed uno in BIPAP (entrambi da 5 a 18 cmH2O). In entrambi i casi questo aumento di pressione viene mantenuto per il tempo impostato (in PCV è il tempo inspiratorio, in BIPAP il T-Palta). In entrambi i respiri il flusso inspiratorio generato (principalmente) dall’aumento di pressione ad un certo punto finisce (in corrispondenza della linea tratteggiata bianca). Qui si vede bene la differenza: durante il tempo inspiratorio in PCV il paziente non può espirare facilmente (il flusso resta bloccato sulla linea dello zero) e la pressione delle vie aeree in questa fase tende ad aumentare, un segno compatibile con un tentativo di espirazione del paziente che non va a buon fine. In BIPAP invece il paziente fa quello che vuole: dopo il termine dell’insufflazione, riesce prima ad espirare (flusso al di sotto dello zero) e poi ad inspirare mentre il ventilatore mantiene la Palta. (Questo comportamento è tipico della BIPAP, anche se qualche ventilatore è diventato capace di “ascoltare” meglio il paziente anche durante la ventilazione a pressione controllata e quindi, entro certi limiti, di accettare le asincronie inspiratorie)

Questo è tutto sul meccanismo di funzionamento della BIPAP. Quando e come usarla? Il post è già molto lungo, avremo modo di riparlarne in futuro.

Per concludere, come sempre ecco i messaggi-chiave:

1) la BIPAP è una modalità di ventilazione nata a cresciuta per la ventilazione invasiva. Può (come tutte le modalità di ventilazione) essere applicata anche durante ventilazione non invasiva, ma i ventilatori da ventilazione non invasiva normalmente non ce l’hanno tra le modalità di ventilazione (anche se si chiamano BiPAP®);

2) la BIPAP è caratterizzata dall’alternarsi di due livelli di CPAP;

3) quando il paziente è passivo la BIPAP è identica alla ventilazione a pressione controllata;

4) quando il paziente è attivo, può aggiungere liberamente la propria attività respiratoria spontanea su entrambi i livelli di pressione: si ha quindi la fusione degli atti respiratori spontanei gli atti respiratori imposti dal ventilatore.

Un sorriso a tutti gli amici di ventilab.

Bibliografia

1) Baum M, Benzer H, Putensen C, Koller W: Biphasic positive airway pressure (BIPAP):  a new form of augmented ventilation. Anaesthesist 1989; 38:452-458.

Read more ...

Insufficienza respiratoria, terapia intensiva e cancro

7 nov 2014


Quando siamo chiamati a valutare un paziente affetto da una patologia oncologica o onco-ematologica in insufficienza respiratoria acuta ci troviamo davanti ad alcune decisioni difficili e al tempo stesso cruciali. In sintesi dobbiamo stabilire se:

a) il supporto delle funzioni vitali possa procurare al paziente un reale beneficio o piuttosto comporti solo un prolungamento delle sue sofferenze;

b) nei casi di dubbio sull’indicazione al supporto vitale, sia opportuno trasferire il paziente in terapia intensiva (TI) o gestirlo finché possibile in reparto a minore intensità di cure;

c) nei casi in cui vi è indicazione al supporto vitale, l’insufficienza respiratoria sia da trattare con ventilazione non invasiva (NIV) oppure invasiva.

La mortalità dei pazienti neoplastici ricoverati in terapia intensiva si è rivelata in passato elevatissima (oltre l’80-90% nei pazienti ematologici1), per cui l’ammissione in TI e la ventilazione meccanica sono state a lungo considerate interventi discutibili in quanto futili.

Dati più recenti indicano tuttavia che la sopravvivenza dei pazienti neoplastici ricoverati in TI e/o sottoposti a ventilazione meccanica è significativamente migliorata nell’ultimo decennio (27-58%2), tanto che ultimamente essi rappresentano il 15-20% di tutte le ammissioni nei reparti intensivi2,3. La riduzione della mortalità è ascrivibile certamente ai progressi compiuti in campo onco/ematologico e intensivistico, ma probabilmente anche a un più efficace triage dei pazienti e allo sviluppo di nuove politiche di ammissione in TI, frutto di una migliore cooperazione tra onco/ematologi e intensivisti4.

Sebbene l’incertezza prognostica sia quasi sempre la regola, per l’eterogeneità delle condizioni generali dei pazienti, dei margini di curabilità del tumore e della gravità della malattia critica, considerare i predittori di successo e di fallimento del trattamento intensivo può aiutare a orientarci sulla questione di cui al punto a del post. In generale sono considerati predittori di esito favorevole lo scompenso cardiaco acuto come causa di insufficienza respiratoria, la batteriemia recente, l’efficacia precoce della ventilazione non invasiva, la chemioterapia di prima linea o lo status di remissione completa, le buone condizioni generali; predittori di esito sfavorevole sono invece l’elevato (>2) numero di insufficienze d’organo, il fallimento della ventilazione non invasiva o la necessità iniziale di ventilazione invasiva, l’assenza di diagnosi eziologica di insufficienza respiratoria, la micosi invasiva, l’età avanzata. Tali fattori non hanno un valore prognostico assoluto, ma dovrebbero integrare il giudizio clinico sulle condizioni attuali del paziente, possibilmente in accordo con l’onco/ematologo curante: eventuali decisioni sul fine vita non andrebbero rimandate, perché ciò non fa che aumentare il carico di sofferenza fisica e emotiva sul paziente e sui suoi familiari5.

Nei casi dubbi (punto b del post), diverse evidenze suggeriscono una più larga politica di ammissione in TI4 dei pazienti oncologici, sebbene sia da evitare ogni irragionevole ostinazione terapeutica e siano da rispettare valori e desideri del paziente, così come la sua spettanza di vita. Per i pazienti candidabili a TI distinguiamo tre opzioni4 (figura 1):

1) trattamento pieno senza limitazioni: sono di solito i pazienti in trattamento di prima linea o quelli con malattia a evoluzione cronica; nel caso di trapianto di midollo osseo bisogna includere in questa opzione i pazienti che si trovano nelle prime 4 settimane dal trapianto, quelli con malattia da rigetto controllata e quelli con epilessia o encefalopatia reversibile;

2) trattamento pieno senza limitazioni di intensità per un tempo limitato (il cosiddetto ICU trial12): alternativa possibile per i pazienti in remissione, con malattia stabile e possibilità di ulteriori opzioni chemioterapiche o con prognosi dubbia o indefinita; consiste nel trattamento pieno per 3-6 gg, quindi nella rivalutazione giornaliera delle disfunzioni d’organo: in assenza di miglioramenti non si incrementano ulteriormente le terapie e si valuta l’avvio di palliazione;

3) ammissione per sola palliazione (pazienti da non intubare): è comunque controverso se la TI sia il posto migliore per offrire una NIV palliativa o per morire.


Il piano terapeutico deve essere precocemente ed esplicitamente chiarito con il paziente o i suoi parenti e gli onco/ematologi. La precocità della eventuale ammissione in TI così come del trattamento della insufficienza respiratoria sembra comportare un vantaggio in termini di sopravvivenza4,13: onco/ematologi e intensivisti dovrebbero probabilmente collaborare prima che le insufficienze d’organo divengano conclamate.

Veniamo al punto c). L’efficacia della ventilazione non invasiva nei pazienti neoplastici, segnalata da alcuni studi, non è confermata da altri e potrebbe essere sovrastimata4. L’intubazione e la ventilazione invasiva sono associati ad aggravamento della prognosi, ma anche la non invasiva, che se applicata precocemente è risultata efficace nel migliorare gli scambi gassosi, ridurre il tasso di intubazione e migliorare l’outcome, è associata ad elevata mortalità in caso di fallimento6,7. Per quanto ne sappiamo oggi, quindi, in assenza di controindicazioni e di predittori di fallimento della NIV, quest’ultima andrebbe applicata precocemente e il paziente dovrebbe essere attentamente monitorizzato e intubato in caso di mancato miglioramento in tempi rapidi (anche 1-2 ore)4,8. I predittori di fallimento della NIV sono in sostanza elevati indici di gravità generale del paziente, elevata gravità della insufficienza respiratoria, assenza di diagnosi eziologica di insufficienza respiratoria, scarsa tolleranza del paziente alla metodica.

In figura 2 una schematica sintesi sulla gestione dell’insufficienza respiratoria nel paziente onco/ematologico9.


Quale sia il luogo più idoneo in cui iniziare il trattamento con NIV (reparto onco/ematologico o TI) resta una questione in sospeso4, essendo disponibili in letteratura pochissime evidenze che forniscono indicazioni di segno opposto10,11. Verosimilmente la disponibilità immediata di sistemi di monitoraggio, di personale infermieristico e di intensivisti in grado di prendere decisioni adeguate e tempestive gioca un ruolo determinante.

In sintesi, possiamo concludere che:

  1. nel decidere che tipo di assistenza offrire al paziente oncologico possiamo affiancare al giudizio clinico la conoscenza dei principali predittori di esito;

  2. l’ammissione in TI dovrebbe essere allargata a tutti i pazienti che possano trarne un realistico beneficio, ricorrendo nei casi dubbi a un trial di alcuni giorni di TI;
  3. se il paziente non è in condizioni troppo gravi il trattamento dell’insufficienza respiratoria può essere la NIV, purché iniziata precocemente e precocemente convertita in invasiva in caso di mancato miglioramento in tempi rapidi.

Con un simile approccio potremo evitare di negare ad alcuni pazienti il supporto vitale potenzialmente utile, minimizzando al tempo stesso il numero e la durata di trattamenti inefficaci, eccessivi e penosi. In contesti caratterizzati da limitazione della spesa sanitaria e da scarsità di posti letto in TI tale strategia dovrebbe consentire una razionale allocazione delle risorse. Una sia pur grossolana verifica della correttezza del metodo proposto potrebbe esserci fornita dal confronto tra percentuali di ricovero, indici di gravità e mortalità dei pazienti onco/ematologici delle nostre terapie intensive con i dati recenti della letteratura.

Un cordiale saluto agli amici e ai lettori di ventilab.

Bibliografia

  1. Ewig S et al. Pulmonary complications in patients with haematological malignancies treated at a respiratory ICU. Eur Respir J 1998;12:116-22

  2. Taccone FS et al. Characteristics and outcomes of cancer patients in European ICUs. Crit Care 2009; 12(1):R15

  3. Soares M et al. Characteristics and outcomes of patients with cancer requiring admission to intensive care units: a prospective multicenter study. Crit Care Med 2010; 38(1):9-15

  4. Saillard C et al. Mechanical ventilation in cancer patients. Minerva Anestesiol 2014;80:712-25

  5. Benoit D et al. Has survival increased in cancer patients admitted to the ICU? We are not sure. Intensive Care Med 2014; 40:1576-9

  6. Depuydt P et al.The impact of the initial ventilatory strategy on survival inhematological patients with acute hypoxemic respiratory failure. J Crit Care 2010; 25:30-6

  7. Molina R et al.Ventilatory support in critically ill hematology patients with respiratory failure. Crit Care 2012; 16:R133

  8. Kostakou E et al. Critically ill cancer patient in intensive care unit: Issues that arise. J Crit Care 2014; 29:817-22

  9. Soares M et al. Noninvasive ventilation in patients with malignancies and hypoxemic acute respiratory failure: A still pending question. J Crit Care 2010; 25:37-8
  10. Squadrone V et al.Early CPAP prevents evolution of acute lung injury in patients with hematologic malignancies. Intensive Care Med 2010; 36:1666-74

  11. Wermke M et al.Respiratory failure in patients undergoing allogeneic hematopoietic SCT-a randomized trial on early non-invasive ventilation based on standard care hematologic wards. Bone Marrow Transplant 2012; 47:574-80

  12. Lecuyer L et al. The ICU Trial: A new admission policy for cancer patients requiring mechanical ventilationCrit Care Med 2007; 35:808–814

  13. Mokart D, et al. Delayed ICU admission is associated with increased mortality in cancer patients with acute respiratory failure. Leuk Lymphoma 2013;54:1724-9

Read more ...

Asincronie paziente-ventilatore durante la ventilazione meccanica (parte seconda): la diagnosi.

18 ott 2014


Nell'ultimo post abbiamo iniziato a parlare di asincronie paziente-ventilatore. Ho concluso il post con un breve quiz a cui hanno risposto 129 tra i più attenti ed intraprendenti lettori di ventilab. Ecco le mie risposte commentate alle domande.



Figura 1

Modalità di ventilazione meccanica. Nella figura 1 propongo il dettaglio di una inspirazione, la traccia superiore (gialla) è la pressione delle vie aeree, quella inferiore (verde) il flusso delle vie aeree. L'inspirazione si riconosce facilmente perchè il flusso è positivo (cioè sopra la linea tratteggiata): la forma del flusso inspiratorio è decrescente e la pressione nelle vie aeree durante l'inspirazione è costante, due caratteristiche tipiche delle ventilazioni pressometriche. Qualsiasi ventilazione pressometrica infatti per definizione deve (o, meglio, dovrebbe) mantenere costante la pressione delle vie aeree durante l'inspirazione, ed il flusso inspiratorio decrescente è la conseguenza dell'inspirazione a pressione costante. Possiamo quindi escludere che si tratti di una ventilazione volumetrica (di norma caratterizzata da un flusso inspiratorio costante ed una pressione delle vie aeree che aumenta durante l'inspirazione) (vedi post del 27/11/2011). Il 73% dei lettori ha risposto correttamente a questa domanda. La ventilazione pressometrica che stiamo vedendo è assistita perchè si vede una piccola riduzione della pressione delle vie aeree prima dell'insufflazione, segno di attivazione del trigger inspiratorio. Potremmo quindi avere impostato una pressione controllata, una pressione controllata a target di volume (che è una ventilazione  pressometrica, anche se imposta un volume!), o una pressione di supporto. Dalle immagini a disposizione non si può stabilire con certezza quale di queste tre ventilazioni sia quella realmente utilizzata (nella realtà era una pressione controllata a target di volume).



Figura 2

Iperinflazione dinamica. La presenza di iperinflazione dinamica si può rilevare con l'interruzione del flusso espiratorio al momento dell'inizio dell'insufflazione successiva. Nella figura 2 persiste ancora il flusso espiratorio quando inizia l'inspirazione? Il caso è subdolo e la risposta è "sì". Infatti se vediamo il flusso espiratorio alla fine della traccia è quasi a zero, ma non proprio zero (si riesce a vedere la linea bianca punteggiata che rappresenta il flusso zero). Abbiamo visto nel post del 18/08/2014 che in questi casi spesso c'è flow limitation e quindi si possono sviluppare anche autoPEEP elevate. Quindi in questo paziente ci possiamo aspettare iperinflazione dinamica e PEEP intrinseca (come ha risposto correttamente il 67% dei lettori), probabilmente di entità non trascurabile.

Sforzi inefficaci. Le curve di flusso e pressione ci fanno vedere uno sforzo inefficace (34% di risposte corrette). Lo vediamo a metà della traccia di flusso in figura 2, quando per un istante il paziente annulla l'espirazione (il flusso espiratorio arriva a toccare la linea dello zero) ma poi ricomincia ad espirare. La traccia bianca della figura (generata dalla rilevazione dell'attività elettrica diaframmatica rilevata dal monitoraggio con catetere per NAVA®, Neurally Adjusted Ventilatory Assisst, Maquet) identifica nello stesso istante una contrazione del diaframma. Lo sforzo inefficace si verifica quando il paziente tenta di inspirare (=contrae i muscoli inspiratori) ma non attiva il trigger. La diagnosi di sforzo inefficace si fa sulla curva di flusso espiratorio, dove si nota è la transitoria riduzione (o addirittura l'annullamento) del flusso espiratorio che subito dopo ricomincia ad una velocità simile a quella che aveva prima del rallentamento. La spiegazione è semplice: il flusso esprime la velocità del volume di gas che si muove nelle vie aeree, è negativo quando l'aria esce dalle vie aeree, è positivo quando l'aria entra nelle vie aeree del paziente.  Un flusso molto negativo vuol dire che l'aria esce velocemente dalle vie aeree, uno poco negativo vuol dire che l'aria esce lentamente. Se iniziamo un'inspirazione mentre c'è ancora un flusso espiratorio, significa che richiamiamo nelle vie aeree il flusso che sta uscendo, si riduce (o si annulla) quindi la velocità del gas che stiamo espirando: in questo caso il flusso espiratorio si avvicina alla (o tocca la) linea dello zero. Se questa attività inspiratoria è insufficiente per iniziare una nuova inspirazione (=non attiva il trigger inspiratorio), quando si rilassa la muscolatura inspiratoria, il flusso espiratorio riprende la propria velocità di uscita (si riallontana dalla linea dello zero).




Figura 3

Doppio trigger. Questa asincronia paziente-ventilatore identifica due inspirazioni separate da un tempo espiratorio molto breve e la prima inspirazione è triggerata dal paziente. Il tempo espiratorio è spesso arbitrariamente definito "breve" quando è meno della metà del tempo inspiratorio medio. Nella figura proposta nell'ultimo post vediamo chiaramente due doppi trigger (79% di risposte corrette). Nella figura tre vediamo il dettaglio di uno di questi doppi trigger: i due flussi inspiratori sono separati da un brevissimo tempo inspiratorio, nettamente più corto della metà dei tempi inspiratori. Da notare che il monitoraggio con catetere NAVA ci consente di affermare che la seconda inspirazione è autociclata perchè si verifica in assenza di attività diaframmatica. In assenza del monitoraggio dell'attività elettrica del diaframma questo autociclaggio sarebbe assolutamente impossibile da identificare, perchè la pressione delle vie aeree, prima della seconda inspirazione, cala al di sotto del valore di PEEP, come quando il trigger viene realmente attivato dal paziente. La spiegazione per questo fenomeno esiste, ma è piuttosto complessa da spiegare: la affronteremo in qualche commento se dovesse interessare.



Figura 4

Autociclaggio. Nella figura 4 ripropongo l'immagine del questionario con l'aggiunta di qualche dettaglio. Il livello della PEEP è stato continuato con la linea tratteggiata rossa durante i periodi inspiratori. Inoltre è stata evidenziata con un cerchio la deflessione della pressione inspiratoria che precede ogni insufflazione, di norma segno di attivazione del trigger inspiratorio da parte del paziente. Da questi dati emergerebbe che tutti le inspirazioni sono triggerate e quindi non ci sono autociclaggi (50% di risposte corrette). Per una trattazione più approfondita del fenomeno rimando al post del 27/01/2013. Come accennato nel paragrafo precedente, però disponendo del segnale generato dal catetere NAVA possiamo vedere che nei due doppi trigger la seconda inspirazione è autociclata. Se scegliamo questo approccio per valutare gli autociclaggi, le risposte corrette scenderebbero al 31%.


Fino a qui abbiamo discusso come e perchè diagnosticare sforzo inefficace, doppio trigger ed autociclaggio. Riassumendo:


1) sforzo inefficace: il flusso espiratorio si avvicina alla (o raggiunge) la linea dello zero per poi riallontanarsi dallo zero;


2) doppio trigger: dopo un'inspirazione triggerata, l'inspirazione successiva avviene dopo un'espirazione molto più breve dell'inspirazione;


3) autociclaggio: manca la piccola riduzione della pressione delle vie aeree prima dell'insufflazione (abbiamo visto che possono esserci dei falsi negativi: sembra che ci sia il triggeraggio, ma invece non c'è)


Non abbiamo però detto cosa fare quando si vedono queste asincronie paziente-ventilatorese dobbiamo considerarle sempre tutte "cattive" (la risposta all'ultima domanda del questionario). Mi sembra però che per oggi possa bastare, affronteremo prossimamente questi argomenti (prima ci sarà un post di Daniele su un argomento veramente interessante...), 


Un sorriso a tutti gli amici di ventilab.



Read more ...

Asincronie paziente-ventilatore durante la ventilazione meccanica.

22 set 2014

Le asincronie durante la ventilazione meccanica sono un argomento di moda in ambito scientifico che mi piacerebbe riuscire a tradurre in alcuni semplici concetti utili nella pratica clinica.

Per asincronia possiamo intendere l’imperfetta sincronizzazione tra i tempi inspiratorio ed espiratorio del paziente e quelli del ventilatore. Tutti noi, anche quando respiriamo spontaneamente, abbiamo un periodo di inspirazione ed uno di espirazione che sono determinati dall’attività dei centri del respiro. Anche il ventilatore meccanico ha un periodo inspiratorio ed uno espiratorio che sono condizionati (nelle principali ventilazioni) dall’impostazione del ventilatore. L’asincronia paziente-ventilatore si manifesta quando i tempi del paziente e quelli del ventilatore non coincidono.

(Qualcuno classifica tra le asincronie anche l’inadeguata assistenza inspiratoria ma, indipendentemente dal fatto che ciò sia o meno corretto, non affronteremo questo capitolo.)

Per comprendere bene le asincronie paziente-ventilatore è necessario affidarsi alla valutazione del monitoraggio delle forme d’onda del monitoraggio respiratorio. A questo scopo è sufficiente la valutazione simultanea delle curve di flusso e pressione. Oggi (e nel prossimo post) affronteremo tre tipi di asincronie:

– l’autociclaggio, cioè l’inizio di una inspirazione meccanica in assenza di attività inspiratoria del paziente o dell’insufflazione programmata del ventilatore. In altre parole, il ventilatore “si sbaglia” e crede di percepire l’inizio dell’attività inspiratoria del paziente che in realtà non è presente;

– lo sforzo inefficace, l’esatto contrario dell’autociclaggio: il paziente inizia l’inspirazione ma il ventilatore non lo percepisce e quindi non inizia ad erogare flusso inspiratorio. Il paziente quindi cerca di inspirare (inutilmente) durante la fase espiratoria del ventilatore;

– il doppio trigger, cioè l’attivazione consecutiva di due inspirazioni non separate da un significativo periodo espiratorio: appena termina un’inspirazione ne inizia immediatamente un’altra.

Esistono anche altri tipi di asincronie che riguardano la fine dell’inspirazione, di queste avremo modo di parlerne in altre occasioni.

Le asincronie paziente-ventilatore non sempre sono ben chiare nell’attività clinica quotidiana. Quando si dice che il paziente è “disadattato”  o che “contrasta”, in realtà si dovrebbe definire meglio quale è il problema: che tipo di asincronia abbiamo di fronte? Ciacuna asincronia ha il proprio specifico trattamento, i propri peculiari accorgimenti nell’impostazione del ventilatore. Abbiamo quindi la necessità di capirle meglio per riuscire a risolverle. Dire che un paziente “contrasta” o è “disadattatonon ci fornisce alcuna indicazione su come migliorare l’interazione paziente-ventilatore.

Prima di discutere insieme le asincronie e le loro implicazioni cliniche, penso sia utile che tutti gli amici di ventilab mi diano una mano per capire che livello di approfondimento dare all’argomento. Pertanto invito caldamente tutti a rispondere al questionario che segue. Chi legge il post dalla propria email, dovrebbe accedere alla pagina web di ventilab (www.ventilab.ito cliccare sul titolo del post che è arrivato nella posta elettronica) per poter partecipare.  Le risposte mi consentiranno per capire meglio cosa dire e come dirlo.

Per adesso quindi ringrazio in anticipo tutti coloro che risponderanno, e fra un paio di settimane ci ritroveremo a discutere parlando di asincronie paziente-ventilatore.

Come sempre, un sorriso a tutti gli amici di ventilab.

PS: se vuoi puoi anche lasciare un commento.

Read more ...

PEEP intrinseca (PEEPi): quando e come trattarla efficacemente (parte seconda).

1 set 2014


Nel post precedente abbiamo lasciato in sospeso la domanda: quali sono i trattamenti più efficaci nel ridurre la PEEP intrinseca e quali invece hanno probabilmente un effetto trascurabile?

La risposta a questa domanda è più facile se si conoscono le cause che incidono maggiormente, dal punto di vista quantitativo, nella formazione della PEEP intrinseca. Sappiamo, ad esempio, che sia l'aumento del volume corrente che quello delle resistenze delle vie aeree possono contribuire alla formazione della PEEP intrinseca: ma quale di queste due cause aumenta di più la PEEP intrinseca? Se rispondessimo a questa domanda, potremmo capire se sarà più efficace la somministrazione di salbutamolo o la riduzione del volume corrente nel trattamento di un paziente con PEEP intrinseca. Ventilab ha dato il suo originale contributo nel dare una risposta a questa domanda.

Circa un anno e mezzo fa avevo chiesto un aiuto alla tribù di ventilab per condurre uno studio multicentrico su iperinflazione dinamica e flow limitation (vedi post del 25/11/2012). Undici Terapie Intensive (dal Piemonte al Friuli, dalla Lombardia alla Campania) hanno aderito all'iniziativa, lo studio si è concluso e speriamo possa essere presto pubblicato: ovviamente agli amici di ventilab spetta di diritto l'anteprima mondiale dei risultati più significativi di questo studio.

In questo studio, che si è svolto su 186 pazienti con PEEP intrinseca in ventilazione controllata, abbiamo analizzato le relazioni quantitative tra la PEEP intrinseca e le sue possibili cause (cioè quei fattori noti per essere associati alla presenza di autoPEEP). Le analisi sono state due: 1) si è stimato quanti cmH2O di autoPEEP produce ciascuna causa (indipendemente dalle altre); 2) abbiamo identificato quelle cause che più spesso si associano alla presenza di valori elevati di PEEP intrinseca (almeno 5 cmH2O).

Un risultato è stato chiaro e sorprendente: volume corrente, frequenza respiratoriavolume/minutotempo espiratorio non producono, di per sè, quantità significative di autoPEEP in assenza di altre concause. Questo significa che in assenza di altri fattori favorenti la formazione di PEEP intrinseca, le variazioni di pattern respiratorio non influiscono significativamente sul valore di autoPEEP (perlomeno se si utilizzano le impostazioni di comune utilizzo clinico). La conseguenza pratica è che nei pazienti passivi "smanettare" sul ventilatore per ridurre l'autoPEEP ha effetti limitati se non si va a curare ciò che sta alla radice del problema. Vediamo ora cosa sta alla radice del problema.

Il singolo fattore quantitativamente più importante nella genesi della PEEP intrinseca è la presenza di flow limitation (vedi post del 04/06/2012), che da sola spiega (in media) la presenza di oltre 2 cmH2O di autoPEEP. Avere flow limitation aumenta di 17 volte il rischio (=odds ratio) di avere elevati valori di PEEP intrinseca. Spesso è difficile misurare correttamente la PEEP intrinseca nei pazienti con attività respiratoria spontanea (alcuni ventilatori non fanno le occlusioni in ventilazione assistita, altre volte l'occlusione di fine espirazione non genera un plateau), ma spesso anche in questi pazienti è possibile valutare la flow limitation con la compressione manuale dell'addome. Quindi nella pratica non sempre possiamo sapere quanta PEEP intriseca ha un paziente, più spesso possiamo sapere se ha o meno flow limitation. Questo ci è sufficiente per sospettare o meno elevati valori di PEEP intrinseca: infatti in presenza di flow limitation molto probabilmente avremo PEEP intrinseca di almeno 5 cmH2O. E di questo dato possiamo fare tesoro per decidere se ingaggiare una battaglia con l'iperinflazione dinamica oppure se considerarla solo un problema poco rilevante nella gestione del paziente.

Un'altra variabile importante sono le resistenze dell'apparato respiratorio, che si associano a poco meno di 1 cmH2O di autoPEEP ogni 10 cmH2O.l-1.sec di resistenza. Nei nostri pazienti, che in media avevano 16 cmH2O.l-1.sec  di resistenza, questa poteva spiegare poco più di 1 cmH2O di PEEP intrinseca. Una resistenza superiore a 15 cmH2O.l-1.sec aumenta di 3 volte il rischio di avere elevati valori di autoPEEP.

Questi primi risultati ci dicono una cosa molto semplice: la PEEP intrinseca si riduce più efficacemente con il salbutamolo che manipolando frequenza respiratoria e volume corrente. I broncodilatatori sono infatti particolarmente efficaci nel ridurre l'iperinflazione dinamica nei pazienti con flow limitation (1,2), così come sono capaci di ridurre le resistenze nei pazienti senza flow limitation.

Abbiamo già anticipato che la durata (in secondi) del tempo espiratorio non ha alcuna relazione con il valore di PEEP intrinseca. Il tempo espiratorio diventa invece importante quando espresso, invece che in secondi, come multiplo della costante di tempo dell'apparato respiratorio (vedi post del 05/02/2014). Infatti tanto più è piccolo il rapporto tempo espiratorio/costante di tempo, tanto più elevata è la PEEP intrinseca. La riduzione di poco più di 1 unità di questo rapporto si associa ad un aumento della autoPEEP di circa 1 cmH2O. Il rapporto tempo espiratorio/costante di tempo ha un fondamentale significato fisiologico. Infatti il volume V espirato al tempo t è descritto dalla seguente equazione: V(t)=V(i).e-t/τ, dove V(i) è il volume iniziale e τ la costante di tempo (3,4). In altre parole il rapporto tempo espiratorio/costante di tempo è l'unico determinate del della quantità di volume espirato nell'espirazione fisiologica.

Mi rendo conto che l'argomento possa essere complesso, quindi cerchiamo di spiegarne il senso con un esempio. Ipotizziamo di avere due pazienti (Mario e Pippo), entrambi con un tempo espiratorio di 1.8 secondi: questo dato non ha un impatto rilevante sul loro valore di PEEP intrinseca. Aggiungiamo come dato la costante di tempo: Mario ha una costante di 0.9 secondi e Pippo invece di 1.8 secondi. Il rapporto tempo espiratorio/costante di tempo di Mario è 2 mentre quello di Pippo è 1. In questo modo vediamo una evidente differenza tra Mario e Pippo: Mario ha un tempo espiratorio più appropriato di Pippo e ci possiamo aspettare che abbia circa 1 cmH2O in meno di autoPEEP solo per questo aspetto. Chi ha un tempo espiratorio/costante di tempo inferiore a 1.85 (come Pippo) ha un rischio circa 13 volte maggiore di avere una PEEP intriseca elevata.

Cerchiamo di dare un significato pratico a tutto questo. I pazienti con elevata PEEP intrinseca di norma hanno elevate resistenze e di conseguenza una costante di tempo lunga. In questi pazienti solo aumenti molto rilevanti del tempo espiratorio (=riduzione di frequenza ed I:E), dell'ordine della costante di tempo, possono ridurre l'autoPEEP. In questo caso possono rientrare ad esempio i pazienti con crisi asmatica. Nei pazienti con basse resistenze, e quindi costante di tempo breve, la PEEP intrinseca è di solito bassa e si può ridurre anche con piccole variazioni del tempo espiratorio. Il paziente tipico in questa condizione è quello senza malattie ostruttive che ha sviluppato autoPEEP perchè ventilato con frequenza e/o I:E elevati.

In conclusione, ecco i punti fondamentali da ricordare:

- la PEEP intrinseca spesso è un problema rilevante se c'è flow limitation (impariamo a fare la manovra di compressione manuale dell'addome);

- utilizziamo i broncodilatatori come strumento principale per la riduzione della PEEP intrinseca;

- l'allungamento del tempo espiratorio diventa importante per ridurre la PEEP intrinseca solo nei pazienti gravemente ostruttivi. In questi casi l'aumento del tempo espiratorio deve essere molto rilevante per essere efficace.

Come sempre, un sorriso a tutti gli amici di ventilab.

Bibliografia.
1) Tantucci C et al. Effect of salbutamol on dynamic hyperinflation in chronic obstructive pulmonary disease patients. Eur Respir J 1998; 12:799-804
2) Boni E et al.  Volume effect and exertional dyspnoea after bronchodilator in patients with COPD with and without expiratory flow limitation at rest. Thorax 2002; 57:528-532
3) Zin WA et al. Single-breath method for measurement of respiratory mechanics in anesthetized animals. J Appl Physiol 1982; 52:1266-1271
4) Mathematical functions relevant to respiratory physiology. In: Lumb AB. Nunn's applied respiratory physiology (7 th edition). Edinburgh, Churchill Livingstone Elsevier Ltd, 2010, pp 521-528

PS: Ciao Mario, buona fortuna!!!


Read more ...

PEEP intrinseca (PEEPi): quando e come trattarla efficacemente (parte prima).

18 ago 2014

La PEEP intrinseca (PEEPi) è presente in molti pazienti sottoposti a ventilazione meccanica. E' sempre un problema medico rilevante? Ridurre o eliminare la PEEP intrinseca deve essere un nostro obiettivo terapeutico?

Esistono molti atti terapeutici per diminuire la PEEP intrinseca: ridurre il volume corrente e/o la frequenza respiratoria e/o la ventilazione minuto, aumentare il tempo espiratorio, posizionare il paziente in posizione seduta, somministrare broncodiltatori. Quali tra questi trattamenti è più efficace per ridurre la PEEP intrinseca e quali hanno un effetto trascurabile?

In questo post e nel prossimo post cercheremo di rispondere a queste domande. Come sempre cercheremo risposte concrete che possano esserci utili nella nostra pratica clinica.

Molti medici che utilizzano la ventilazione meccanica sanno ormai identificare la presenza di PEEP intrinseca a colpo d'occhio. Come si può vedere nella figura 1, la presenza di PEEP intrinseca si può identificare con l'interruzione del flusso espiratorio prima che questo arrivi a zero (freccia rossa) e quindi prima che inizi l'inspirazione successiva (freccia bianca).


 Figura 1

Attenzione però a interpretare correttamente questo segno! Non è assolutamente vero che maggiore è lo "scalino" sulla traccia di flusso a fine espirazione, maggiore è la PEEP intrinseca. Non è raro osservare pazienti che hanno quasi (ma non completamente) raggiunto lo zero flusso espiratorio all'inizio dell'inspirazione successiva, che presentano elevati valori di PEEP intrinseca.


Vediamo l'esempio nella figura 2.


 Figura 2

In questa paziente è quasi impercettibile la persistenza di flusso a fine espirazione, eppure ha 8 cmH2O di PEEP intrinseca (tutta la PEEP totale è intrinseca essendo ventilata senza PEEP). Lo vediamo bene nell'occlusione di fine espirazione:



 Figura 3

Questo comportamento è tipico dei pazienti con flow limitation (vedi post del 04/06/2012) che, dopo il picco iniziale, hanno un flusso espiratorio molto basso. Quindi se sviluppano PEEP intrinseca (che di norma hanno) vediamo uno "scalino" molto piccolo sul flusso a fine espirazione, proprio perchè viene amputato un flusso espiratorio già molto basso a causa della flow limitation.


La PEEP intrinseca spesso viene vista come un nemico da combattere in tutti modi: è sufficiente diagnosticarla per scatenare un repertorio di interventi terapeutici. A mio modo di vedere spesso la PEEP intrinseca è solamente un segno clinico.


La PEEP intrinseca è infatti la risposta compensatoria del nostro apparato respiratorio quando non è possibile l'espirazione completa del volume corrente nel tempo espiratorio a disposizione. Analizziamo la figura 4.


Figura 4

In questa figura sono mostrate le occlusioni a fine espirazione e fine inspirazione del paziente di cui abbiamo mostrato le curve di pressione e flusso nella figura 1. Come abbiamo visto, il paziente ha certamente PEEP intrinseca ed è proprio grazie ad essa che riesce ad espirare tutto il volume corrente (come si vede indicato dalla freccia 1, il volume corrente ritorna a zero alla fine dell'espirazione).


Analizziamo insieme il fenomeno. L'espirazione termina in corrispondenza della linea verticale tratteggiata arancione, che segna l'inizio dell'occlusione delle vie aeree a fine espirazione: in questo punto la pressione è sulla linea dello zero perchè la PEEP è 0 cmH2O. Subito dopo l'occlusione delle vie aeree a fine espirazione, la pressione delle vie aeree aumenta a 5 cmH2O. Questa è la PEEP intrinseca, una pressione presente all'interno del polmone, invisibile guardando la pressione delle vie aeree (proprio perchè è nel polmoni e non nel ventilatore), ma ben evidente durante le occlusioni delle vie aeree (quando si ferma il ventilatore meccanico e lo si mette in comunicazione statica con i polmoni).


L'inspirazione aggiunge pressione nei polmoni al di sopra della PEEP intrinseca, che funziona come un gradino sopra il quale "viene fatto salire" il volume corrente. Nel nostro paziente si vede che la pressione di plateau (Pplat) dopo l'occlusione di fine inspirazione (che inizia dopo la linea verticale tratteggiata verde) è di 13 cmH2O. Questa pressione è la somma dei 5 cmH2O di PEEP intrinseca e di altri 8 cmH2O sviluppati dal volume corrente introdotto con l'inspirazione.


Quando inizia l'espirazione, la forza che spinge l'aria fuori dai polmoni è data dalla differenza di pressione tra gli alveoli a fine inspirazione (che stimiamo con la pressione di plateau) e la pressione delle vie aeree, che è uguale al valore di PEEP, nel nostro caso 0 cmH2O. Quindi la pressione che genera il flusso espiratorio è in questo caso di 13 cmH2O. Grazie alla PEEP intrinseca. Infatti se non vi fosse PEEP intrinseca, la pressione di plateau sarebbe di 8 cmH2O (solo quelli generati dal volume corrente) e quindi il flusso espiratorio sarebbe inferiore perchè sospinto solamente da 8 cmH2O invece che da 13 cmH2O. Questo è quanto che succede al primo respiro quando iniziamo la ventilazione: questi 8 cmH2O non sono sufficienti a generare un flusso espiratorio che consenta di espirare tutto il volume corrente. Quindi il secondo respiro inizia avendo intrappolato un po' di volume e quindi con un po' di PEEP intrinseca che aumenterà quindi il flusso espiratorio. Questo processo si ripete di solito per 2-3 respiri, aumentando gradualmente la PEEP intrinseca fino a quando la differenza di pressione tra plateau inspiratorio e vie aeree produce il flusso espiratorio necessario e sufficiente ad espirare tutto il volume corrente. Nulla di più e nulla di meno. (Il flusso espiratorio può essere ulteriormente aumentato dalla concomitante una riduzione delle resistenze delle vie aeree che in alcuni pazienti può manifestarsi con l'aumento del volume polmonare legato all'iperinflazione dinamica.)


Come tutte le risposte compensatorie dell'organismo, anche la PEEP intrinseca può portare ad alcuni svantaggi che però diventano clinicamente rilevanti solo in alcune circostanze. La PEEP intrinseca (come anche la PEEP esterna) potrebbe ridurre la portata cardiaca, mettere il polmone a rischio di sovradistensione a fine inspirazione. Potrebbe inoltre aumentare il lavoro respiratorio ed eventualmente ridurre l'efficienza dei muscoli respiratori quando il paziente è in ventilazione assistita.


Se questi sono gli effetti potenzialmente sfavorevoli della PEEP intrinseca, possiamo capire quando temerli. La PEEP intrinseca non è un problema emodinamico quando non vi sono problemi emodinamici. E' lapalissiano, ma è così: in un paziente normoteso senza amine non devo preoccuparmi se vi è un po' di PEEP intrinseca (perlomeno per questo aspetto). E nei pazienti con shock, la PEEP intrinseca potrebbe essere un problema in caso di bassa portata secondaria a ipovolemia o scompenso cardiaco destro. Al contrario la PEEP intrinseca non dovrebbe nuocere (dal punto di vista emodinamico) ai pazienti con scompenso cardiaco sinistro.


La stress dovuto alla sovradistensione polmonare può normalmente essere temuto quando si superano i 25-30 cmH2O di pressione di plateau. Quando la pressione di plateau è al di sotto di questi valori, la PEEP intrinseca non è un problema per lo stress del polmone e quindi non necessita di essere ridotta per prevenire questo problema che non esiste.


Non farei nemmeno un dramma dell'impatto di bassi valori di PEEP intrinseca sul lavoro respiratorio: spesso sono un falso problema. I nostri pazienti durante il weaning devono avere un proprio lavoro respiratorio. Se la PEEP intrinseca contribuisce con pochi cmH2O al lavoro respiratorio, spesso possiamo comunque mantenere il lavoro respiratorio totale a livelli accettabili con una buona assistenza inspiratoria (=pressione di supporto): in questo modo si minimizza il lavoro respiratorio dopo il triggeraggio, lasciando  il carico soglia come componente principale del lavoro respiratorio. E ricordarsi di mantenere una piccolo valore di PEEP esterna.


In linea di massima mi sento di poter dire che una PEEP intrinseca inferiore a 5 cmH2O difficilmente diventa un problema serio.


Ma quando la PEEP intrinseca è o potrebbe essere un problema, quali sono le cose più efficaci che possiamo fare per ridurla? L'articolata risposta a questa domanda sarà l'argomento del prossio post.


Nel frattempo vediamo di ricapitolare i punti più importanti che abbiamo discusso oggi:


1) l'interruzione del flusso espiratorio è una valutazione qualitativa della PEEP intrinseca e non quantitativa. Ci fa intuire se la PEEP intrinseca è presente o meno, non ci dice nulla sulla sua entità.


2) la PEEP intrinseca è semplicemnte una risposta compensatoria dell'apparato respiratorio che consente di espirare tutto il volume corrente quando il tempo espiratorio non è sufficiente. Si sviluppa solo quella PEEP intrinseca necessaria e sufficiente per raggiungere questo scopo. Pertanto deve essere vista principalmente come un segno clinico.


3) la PEEP intrinseca può diventare un problema di per sè nei pazienti con shock ipovolemico, scompenso cardiaco destro, quando la pressione di plateau è maggiore di 25-30 cmH2O.


Come sempre, un sorriso a tutti gli amici di ventilab.

Read more ...