Ventilazione protettiva per i polmoni sani. (seconda parte).

26 dic 2011




Concludiamo oggi l'argomento introdotto da Nadia sulla ventilazione dei pazienti con polmoni sani.


La ventilazione protettiva ha l'obiettivo di prevenire il danno polmonare indotto dalla ventilazione (VILI, ventilator-induced lung injury) agendo su due meccanismi che lo favoriscono: la sovradistensione dei polmoni e i ciclici collasso e riapertura delle strutture alveolari durante l'insufflazione.


Gli strumenti della ventilazione protettiva sono tre: 1) basso volume ; 2) pressione di plateau inferiore a 30 cmH2O; 3) PEEP.


La ventilazione protettiva riduce infiammazione e mortalità nei pazienti con Acute Respiratory Distress Syndrome/Acute Lung Injury (ARDS/ALI). E nei polmoni sani?


Prima di rispondere a questa domanda, facciamo qualche considerazione sul significato fisiologico della ventilazione protettiva nei polmoni sani.


- Volume corrente. Un volume corrente può essere considerato basso (quindi protettivo) fino a 7-8 ml/kg di peso ideale (1). In un individuo adulto medio possiamo stimare un peso ideale di circa 70 kg. Quindi una ventilazione protettiva richiederebbe un volume corrente di circa 500 ml. Se apriamo un libro di fisiologia, vediamo che una persona normale ha un volume corrente di 500 ml (2). Nel soggetto sano, il volume corrente della ventilazione protettiva altro non è che il fisiologico volume corrente.


- Pressione di plateau inferiore a 30 cmH2O. In un soggetto sano in anestesia generale l'elastanza dell'apparato respiratorio è circa 20 cmH2O/l (3). Questo significa che con un litro di volume corrente otteniamo 20 cmH2O di pressione di plateau. Nei polmoni sani quindi la pressione di plateau non è di fatto un limite alla ventilazione.




- PEEP. I polmoni sani, quando sono ventilati in anestesia mostrano precocemente la comparsa di atelectasie basali (4). Queste atelettasie sono reversibli con l'applicazione di una PEEP (vedi figura a lato). In altre parole la PEEP elimina un effetto collaterale della ventilazione controllata.


Da queste considerazioni possiamo giungere ad una prima conclusione: la ventilazione protettiva nei polmoni normali altro non è che la ventilazione fisiologica. Tutto ciò che non è “protettivo” è antifisiologico. Dovrebbe quindi essere capovolta la domanda: esiste qualche buona ragione per non fare la ventilazione protettiva nei polmoni sani?


Non esiste alcuno studio clinico che ci mostri che la ventilazione con alti volumi correnti sia superiore alla ventilazione protettiva nei polmoni sani. Viceversa esistono alcune prove del contrario.


E infatti ben documentato che l'utilizzo di un volume corrente di 10-12 ml/kg (rispetto a 5-7 ml/kg) aumenta l'infiammazione polmonare (5,6) ed aumenta la probabilità di sviluppare ALI quando utilizzati in polmoni sani (5).


Uno studio osservazionale ha mostrato come un basso volume corrente (fino a 8 ml/kg) riduce il rischio di sviluppare ALI nei pazienti (1). Lo stesso gruppo, dopo un avere adottato la ventilazione a basso volume corrente in tutti i pazienti ventilati, ha documentato una riduzione dell'incidenza della ALI (7).


Quindi ventilazione protettiva per tutti? Finchè siamo in ventilazione controllata, la risposta è sì, ed i problemi sono pochi. Certamente sono il primo a togliere la PEEP se ho un paziente ipoteso con shock emorragico (la rimetto subito appena la pressione arteriosa me lo consente) e so bene che in un trauma cranico grave con ipertensione endocranica potrebbe essere necessario aumentare il volume corrente oltre i limiti suggeriti dalla ventilazione protettiva (anche se non ricordo l'ultima volta in cui l'ho dovuto fare veramente...). Ma di solito i polmoni sani stanno benissimo con la ventilazione protettiva in ventilazione controllata.


I problemi di solito arrivano quando siamo in ventilazione assistita: esistono pazienti che cercano un volume corrente più alto. Quando sono in pressione di supporto lo ottengono facilmente, quando invece ventilano in assistita-controllata mostrano fastidiose asincronie con il ventilatore. Che fare?


A questo punto propongo la mia opinione. Identifichiamo tre casi di elevato volume corrente in pressione di supporto (tralasciamo per semplicità le assistite-controllate):





  • respiro profondo e tranquillo, espirazione passiva, nessuna attivazione dei muscoli inspiratori accessori, frequenza respiratoria bassa (< 15 minuto), flusso inspiratorio decrescente (a scivolo) (vedi post del 8 maggio 2011): il paziente è probabilmente sovrassistito, riduco il livello di pressione di supporto;




  • respiro profondo e tranquillo, espirazione passiva, nessuna attivazione dei muscoli inspiratori accessori, frequenza respiratoria media (< 25/min), flusso inspiratorio non passivamente decrescente: lo lascio respirare come desidera, perchè probabilmente le pressioni transpolmonari restano basse. Mi vengono in mente, ad esempio, alcuni pazienti che senza affanno compensano una acidosi metabolica;




  • tachipnea (> 25/min), utilizzo muscoli inspiratori accessori, espirazione forzata: oltre a cercare di risolvere le cause di un eventuale aumento del metabolismo (febbre, sepsi), mi pongo il problema se sedare un po' il paziente. L'obiettivo non è, ovviamente, di “stenderlo”, ma di avere un paziente calmo e tranquillo e con una drive respiratorio (e quindi pressioni transpolmonari) ridotto. Gli oppioidi rappresentano il farmaco principale della sedazione con queste finalità.




In conclusione, ventilazione protettiva per tutti perchè è fisiologica, non esistono evidenze che sia migliore la ventilazione con alti volumi correnti, esistono studi che invece suggeriscono che un basso volume corrente (con PEEP) sia realmente protettivo nei polmoni sani.


Se il paziente è attivo e non fa la ventilazione protettiva, dipende: se la respirazione è tranquilla, possiamo accettarla anche se il volume corrente è > 7-8 ml/kg. Viceversa dobbiamo valutare una blanda sedazione.


Un sicero augurio di Buone Feste e Buon Anno a tutti gli amici di Ventilab.


Bibliografia.


1) Gajic O et al. Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med 2004; 32:1817-24


2) Pulmonary ventilation. In Guyton AC, Hall JE. Textbook of medical physiology. Chapt. 37, pp 432-443. WB Saunders Company, Philadelphia, 2000.


3) Behrakis PK et al. Respiratory mechanics during halothane anesthesia and anesthesia-paralysis in humans. J Appl Physiol 1983; 55: 1085-92


4) Tokics L et al. Lung collapse and gas exchange during general anesthesia: effects of spontaneous breathing, muscle paralysis, and positive end-expiratory pressure. Anesthesiology1987; 66:157-67


5) Determann RM et al. Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without acute lung injury: a preventive randomized controlled trial. Critical Care 2010, 14:R1


6) Pinheiro de Oliveira R et al. Mechanical ventilation with high tidal volume induces inflammation in patients without lung disease. Critical Care 2010, 14:R39


7) Yilmaz M et al. Toward the prevention of acute lung injury: Protocol-guided limitation of large tidal volume ventilation and inappropriate transfusion. Crit Care Med 2007; 35:1660-6

Read more ...

Ventilazione protettiva per i polmoni sani?

18 dic 2011

In Terapia Intensiva sottoponiamo a ventilazione meccanica molto più spesso pazienti con polmoni sani che con Acute Lung Injury/Acute Respiratory Distress Syndrome (ALI/ARDS). Come ventilare queste persone? Si deve pensare ad una ventilazione protettiva anche in assenza di ALI/ARDS?

Pubblico molto volentieri le rifllessioni e la proposta pratica di una collega di Torino su come impostare la ventilazione meccanica nei pazienti senza ALI/ARDS.

_°_°_°_°_°_°_°_°_°_°_°_


La ventilazione protettiva è l'impiego di volumi correnti (VT) bassi (al massimo 7 ml/kg di peso ideale) e pressioni di plateau (Pplat) basse (meno di 30 cmH2O) ottenuto con qualsiasi modalità ventilatoria.

E' dimostrato che pazienti con ARDS o ALI ventilati con ventilazione protettiva hanno mortalità inferiore (1).

Occorre usare la ventilazione protettiva anche con pazienti che non hanno ALI/ARDS?

Studi sperimentali condotti su animali (2) e pazienti con polmoni sani (3) hanno dimostrato che già dopo brevi periodi di ventilazione con VT alti e Pplat alte i polmoni presentano lesioni istologiche, mentre nel liquido del lavaggio bronchiolo-alveolare e nel sangue aumentano i mediatori dell'infiammazione. Il danno aumenta al prolungarsi della ventilazione.

VT alti e Pplat alte danneggiano dunque anche i polmoni sani.

Questo danno polmonare ha reali effetti clinici? ovvero alti VT e alte Pplat causano ALI/ARDS in pazienti con polmoni sani?

Studi di coorte retrospettivi (4), molto usati per indagare rapporti di causalità, hanno diviso i pazienti ammessi in terapia intensiva, senza danno polmonare all'ingresso, in due gruppi: chi ha sviluppato ALI/ARDS durante la degenza e chi no. La ventilazione con alti VT era un fattore di rischio per lo sviluppo di ALI/ARDS.

La teoria del “Multiple hit model” ci spiega perchè non tutti i pazienti ventilati con alti VT e alte Pplat sviluppano ALI/ARDS (5).

Un primo fattore (es. trauma toracico, chirurgia toracica o addominale, trasfusioni multiple, inalazione etc) determina un primo danno polmonare, la ventilazione ad alti VT e alte pressioni aggrava questo danno fino a determinare ALI/ARDS, con l'eventuale concorso di altri fattori (es. sepsi, infezione polmonare).

La ventilazione protettiva è una delle strategie terapeutiche che possiamo impiegare per ridurre le complicanze iatrogene della ventilazione, nonchè per ridurre la mortalità di pazienti con ALI/ARDS.

In pratica

  • Applicare la ventilazione protettiva a tutti i pazienti che necessitino di ventilazione meccanica prolungata (6 ore in letturatura sono già considerate un periodo prolungato!)

  • Tidal volume: 7 ml/Kg peso ideale

  • Frequenza respiratoria iniziale: 15/min

  • Misurare la pressione di plateau mediante pausa di fine inspirazione di 5 sec e controllare che sia inferiore a 30 cmH2O


Alcune osservazioni:

Il calcolo del VT deve essere fatto sulla base del peso ideale, ottenuto con la seguente formula:

Uomini: 50 + 0.91 x (altezza in cm – 152.4)

Donne: 45.5 + 0.91 x (altezza in cm – 152.4)

Un modo semplice ed immediato per fare il calcolo è quello di togliere 100 all'altezza del paziente espressa in cm, si ottiene un valore che poco si discosta da quello ottenuto utilizzando la formula e che consente l'impostazione del ventilatore in tempi più rapidi.

Es. Uomo alto 170 cm:

- peso ideale sec formula: 50 + 0,91 x (170 – 152.4) = 66 Kg -> VT consigliato: 66 X 7 = 460 ml

- peso ideale calcolato in modo approssimativo: 170 – 100 = 70 Kg -> VT consigliato: 70 X 7 = 490ml

  • Osservazione pratica: un volume corrente di 700 ml presuppone che il paziente sia alto almeno 2 metri!

  • Alcuni ventilatori (es. Evita XL) offrono nella schermata di avvio il calcolo del volume corrente secondo la ventilazione protettiva una volta immesso il peso ideale del paziente.

  • E' importante applicare volumi correnti bassi anche quando le pressioni di plateau sono inferiori a 30 cmH2O. Infatti VT e Pplat influiscono in modo indipendente sulla mortalità (6).

  • A volte in pazienti particolari (es. obesi, ustioni al torace) possono essere accettabili pressioni di plateau più elevate, perchè in realtà non riflettono un reale aumento della pressione transpolmonare (cioè di quello che realmente sta accadendo al polmone), ma solo una riduzione della compliance del torace (7).

  • Considerazioni analoghe valgono per la ventilazione in anestesia generale durante interventi chirurgici.


Bibliografia.

1) The Cochrane Library 2007 issue 2

2) Cilley et al. J Pediatr Surg 1993; 28: 488-493

3) Pinheiro de Oliveira R et al. Critical Care 2010, 14:R39

4) Gajic et al. Int Care Med 2005; 31: 922-926

5) Wolthuis et al. Anesthesiology 2008; 108: 46-54

6) Hager et al. Am J Respir Crit Care Med 2005; 172: 1241-1245

7) Pelosi et al. Curr Opin Crit Care 2011; 17: 1-7

_°_°_°_°_°_°_°_°_°_°_°_


Grazie del contributo, Nadia.


Due domande agli amici di ventilab: come pensi sia giusto ventilare chi ha i polmoni sani? E' un problema rilevante? La prossima settimana farò le mie considerazioni sull'argomento. Nel frattempo mi piacerebbe sentire i commenti dei lettori.


Un cordiale saluto a tutti.


 
Read more ...

Una nuova pubblicazione sul Monitoraggio grafico

12 dic 2011






Sta arrivando la notte di S. Lucia che, lo dico per i non bresciani, è la notte in cui i bravi bambini ricevono i doni natalizi. Il suo nome è legato al concetto di "luce" e non potevo presentarvi in altra data che questa sera un nuovo lavoro in pubblicazione su Critical Care [1] che ha suscitato la mia curiosità in quanto costituisce un’inattesa pubblicità per il  nostro corso e per l’approccio alla ventilazione che andiamo proponendo: monitoraggio grafico in piena luce. In sostanza cosa ci rivela questo studio? Afferma che l’analisi delle onde  generate durante la ventilazione, in questo caso non invasiva, ha effetti positivi sui parametri fisiologici nei pazienti COPD e consente di raggiungere obiettivi personalizzati sul paziente.

 

Lo studio multicentrico, prospettico, randomizzato e controllato è stato condotto in cinque terapie intensive intermedie respiratorie, con personale esperto nell’utilizzo della ventilazione non invasiva. Ha arruolato 70 pazienti COPD riacutizzati che venivano inclusi o nel  gruppo “ottimizzato” o in quello “standard”: nel primo il medico poteva vedere il monitoraggio grafico (onde di pressione e di flusso) e prendere decisioni conseguenti, nell’altro il monitor grafico era oscurato. Nel primo gruppo le azioni consistevano nell’individuare e correggere auto trigger, sforzi inefficaci, ottimizzare il ciclaggio espiratorio, individuare e correggere PEEPi. Gli obiettivi dello studio consistevano nel valutare la normalizzazione del pH dopo due ore di ventilazione e, come obiettivo secondario, i cambiamenti nelle variabili fisiologiche e l’esito dei pazienti a 30 giorni. Per valutare la tolleranza alla ventilazione i pazienti venivano intervistati circa la difficoltà inspiratoria ed espiratoria che dovevano indicare con l’ausilio di un analogo visivo (VAS).

Il 51% dei pazienti nel gruppo “ottimizzato” rispetto al 26% di quelli nel gruppo “standard” raggiungevano la normalizzazione del pH  entro le prime due ore di ventilazione (differenza significativa): questa differenza, pur mantenendosi favorevole al primo gruppo, nel periodo successivo non raggiungeva più la significatività.



In letteratura [2] il valore di pH dopo due ore di trattamento è stato correlato con l’insuccesso della NIMV (e necessità di intubazione tracheale): costituisce quindi un parametro fisiologico di forte impatto clinico. Per quanto riguarda gli obiettivi secondari, i pazienti del gruppo “ottimizzato” hanno mostrato nelle prime sei ore una più rapida riduzione statisticamente significativa della PaCO2, l’applicazione di più alti valori di PEEPe e di un trigger inspiratorio più sensibile; il gruppo “ottimizzato” ha presentato una maggiore tolleranza della ventilazione, statisticamente significativa solo in termini di minor attivazione degli allarmi. La sopravvivenza a 30 giorni è stata sovrapponibile nei due gruppi: probabilmente
sarebbe stato necessario un campione molto più consistente per evidenziare eventuali differenze.

Ho voluto citarvi questo lavoro non certo per i risultati che son tutt’altro che clamorosi ma perché è il primo studio che mostra una potenziale efficacia clinica dall’analisi grafica della ventilazione. L’analisi delle onde di pressione e di flusso induce il medico ad usare più alti valori
di PEEPe, un trigger inspiratorio più sensibile, una più veloce pressurizzazione: tutto questo può generare migliore tolleranza da parte del paziente e quindi maggior efficacia della metodica; inoltre permette una più rapida normalizzazione del pH ovvero risultati più pronti e meno incertezza in una fase molto delicata in cui si deve decidere dell’utilizzo o meno dell’intubazione tracheale. In sostanza un medico capace di utilizzare il monitoraggio grafico della ventilazione è in grado di ottenere il massimo dalla modalità di ventilazione impiegata a beneficio del paziente.

  1.  Di Marco F et al. Optimization of ventilator setting by flow and pressure waveforms analysis during noninvasive ventilation for acute exacerbations of COPD: a multicentric randomized controlled trial. Crit Care. 2011 Nov 24;15(6):R283. [Epub ahead of print].

  2. Carratù P et al. Early and late failure of noninvasive ventilation in chronic obstructive pulmonary disease with acute exacerbation. European Journal of Clinical Investigation (2005)35, 404–409.

Read more ...

La pressione resistiva: 3 implicazioni pratiche.

5 dic 2011


Sicuramente il tubo qui a lato non è percorso da un flusso d'aria. Entrambe le estremità sono in comunicazione con l'ambiente e quindi hanno la stessa pressione (cioè la pressione atmosferica). E senza una differenza di pressione tra i due estremi non può esistere un flusso.

Se aumentiamo la pressione all'estremità prossimale del tubo (dove c'è il raccordo per la Y) si genera un flusso che va dall'estremo prossimale all'estremo distale del tubo (verso la cuffia), sempre aperto alla pressione atmosferica. L'entità del flusso è direttamente proporzionale alla differenza di pressione (dP) tra gli estremi del tubo ed inversamente proporzionale alla resistenza R del tubo: flusso = dP/R.

La differenza di pressione che genera il flusso è la pressione resistiva.

Ammettiamo che nel nostro tubo venga applicata una pressione di 8 cmH2O e che si ottenga un flusso di 1 l.s-1.*

Quanto sarà la pressione a metà del tubo? Possiamo riscrivere l'equazione del flusso (vedi sopra) come dP = flusso x R. Dalla legge di Hagen-Poiseuille sappiamo che R è direttamente proporzionale alla lunghezza del condotto: a metà tubo avremo metà resistenza. Nel nostro esempio, quindi, il dP tra la metà e la fine del tubo sarà la metà del dP totale, cioè 4 cmH2O. Per lo stesso ragionamento possiamo prevedere che la pressione interna al tubo dopo 1/4 della sua lunghezza sia di 6 cmH2O (cioè si sia ridotta di 1/4 del dP). Analogamente dopo 3/4 della lunghezza, la pressione si sarà ridotta di 3/4, sarà cioè di 2 cmH2O. Alla fine del tubo (o per meglio dire dove cessa il flusso che si disperde nell'atmosfera), la pressione è diventata uguale alla pressione atmosferica (figura 1, in alto).



Figura 1

Se il tubo si restringe, per mantenere lo stesso flusso bisogna applicare una pressione più elevata per vincere la resistenza più alta. Ma alla fine del tubo, in entrambi i casi, avremo la stessa pressione. La pressione resistiva è sempre 0 dove non c'è flusso (figura 1, in basso).

Nell'apparato respiratorio non c'è pressione resistiva in due casi:

  1. nelle vie aeree quando non c'è flusso: ad esempio durante le occlusioni di fine inspirazione o fine espirazione o durante un periodo di apnea:

  2. negli alveoli, anche se c'è flusso nelle vie aeree: il movimento di gas per differenza di pressione (cioè il flusso convettivo) di norma si esaurisce nei bronchioli terminali. Nei bronchioli respiratori, nei dotti alveolari e negli alveoli non vi è mai flusso convettivo ed i gas si spostano per differenza di pressione parziale (flusso diffusivo). Gli alveoli sono protetti dalla pressione resistiva.


Tre implicazioni pratiche delle considerazioni fisiologiche che abbiamo finora discusso sono:

  1. durante le manovre di occlusione delle vie aeree, non esiste flusso. Ne consegue che la pressione è uguale in tutti i punti dell'apparato respiratorio e che quindi la pressione che misuriamo nel ventilatore è uguale a quella degli alveoli. Ecco perchè la pressione di plateau, misurata a fine inspirazione, ci serve per guidare la ventilazione protettiva;

  2. la pressione di picco è misurata quando c'è flusso ed è la somma di pressione elastica, pressione resistiva e PEEP totale (vedi post del 24/06/2011). Non ci dà quindi informazioni sulla pressione alveolare perchè questa sarà più bassa in ragione della pressione resistiva necessaria per spingere quel flusso dal ventilatore ai bronchioli terminali. A questo punto è chiaro che se misuriamo la differenza tra pressione di picco e pressione di plateau conosciamo la pressione resistiva.

  3. La pressione resistiva aumenta se aumenta il flusso (dP=flusso x R). Quando vogliamo aumentare il tempo espiratorio (ad esempio nei pazienti con iperinflazione dinamica) dobbiamo ridurre inevitabilmente il tempo inspiratorio, Questo si traduce in aumento del flusso inspiratorio (=volume corrente/tempo inspiratorio). La conseguenza è l'aumento della pressione resistiva che induce un aumento della pressione di picco. Ma se questo è associato ad una riduzione della PEEP intrinseca, la pressione di plateau diminuisce ed i polmoni sono più protetti dal ventilator-induced lung injury (VILI) (figura 2).




Figura 2

In conclusione, valutiamo sempre l'impatto della ventilazione al netto della pressione resistiva: è facile, basta fare un'occlusione delle vie aeree a fine inspirazione di 3 secondi e leggere la pressione di pausa che viene rilevata.

Un saluto a tutti gli amici di ventilab.

 

*Questo implica che la R del tubo sia di 8 cmH2O.l-1.s : R = dP/flusso -> R = 8 cmH2O / 1 l.s-1

 
Read more ...

Workshop "La ventilazione non-invasiva: dalle evidenze scientifiche alla pratica clinica." a Brescia il 28 gennaio 2012.

4 dic 2011

Come anticipato nel post del 27 novembre 2011, il workshop "La ventilazione non-invasiva: dalle evidenze scientifiche alla pratica clinica." si svolgerà il 28 gennaio 2012 a Brescia presso la Fondazione Poliambulanza.

Il programma è il seguente:

Moderatore: Andrea Candiani (Cattedra di Anestesia e Rianimazione, Università degli Studi di Brescia)
- ore 8.45-9.00 registrazione dei partecipanti
- ore 9.00-9.30: Introduzione alla giornata - Achille Bernardini, Dipartimento Emergenza Alta Specialità, Fondazione Poliambulanza, Brescia - Andrea Candiani, Cattedra di Anestesia e Rianimazione, Università degli Studi di Brescia
- ore 9.30-10.00: Considerazioni critiche sull'uso della ventilazione non invasiva - Giuseppe Natalini, Terapia Intensiva, Fondazione Poliambulanza, Brescia
- ore 10.00-11.00: La ventilazione non invasiva nel paziente con insufficienza respiratoria acuta ipossiemica - Giuseppe Foti, Neurorianimazione, Lecco
- ore 11.00-11.15: coffee-break
- ore 11.15-12.15: La ventilazione non invasiva nel paziente con insufficienza respiratoria ipercapnica - Michele Vitacca, Pneumologia, Fondazione Maugeri, Lumezzane
- ore 12.15-12.45: Discussione
- ore 12.45-13.00: Conclusioni - Giuseppe Natalini, Terapia Intensiva, Fondazione Poliambulanza, Brescia

Il compito affidato ai relatori è duplice: dovranno 1) discutere criticamente le evidenze della letteratura e, soprattutto, 2) aprire al pubbblico la propria esperienza clinica. Sia il dott. Foti che il dott. Vitacca sono degli esperti che lavorano in prima linea: un'occasione davvero rara di avere la sintesi tra evidenze scientifiche e pratica clinica.

Il dott. Giuseppe Foti, dopo una vita all'Ospedale S. Gerardo di Monza, è da pochi giorni primario della Neurorianimazione dell'Ospedale di Lecco. Ha una qualificata esperienza clinica e scientifica nel trattamento dei pazienti con insufficienza respiratoria acuta, dalla circolazione extracorporea alla ventilazione non-invasiva.

Il dott. Michele Vitacca, anestesista rianimatore e pneumologo, è uno dei massimi esperti internazionali nel trattamento della insufficienza respiratoria cronica con la ventilazione non-invasiva. Usava (e studiava) la ventilazione non-invasiva anche in tempi in cui la ventilazione non-invasiva era una strana metodica vista con diffidenza e scetticismo.

Il mio contributo sarà una premessa all'uso della ventilazione non-invasiva: se ne possono sfruttare i punti di forza solo conoscendone i limiti.

L’iscrizione è gratuita (ma obbligatoria), i posti sono limitati a 200 per la capienza della sala. L’iscrizione può essere fatta online sul sito web della Fondazione Poliambulanza, nella pagina Eventi Formativi (clicca qui per arrivare subito al modulo di iscrizione).

Infine un cordiale ed affettuoso saluto al prof. Giorgio Conti, che non potrà essere dei nostri in questa occasione. Sono sicuro che avremo presto l'occasione di averlo gradito ospite.

Aspetto numerosi tutti gli amici di ventilab.

A presto

Giuseppe Natalini
Read more ...

Ventilazione a volume controllato o ventilazione a pressione controllata? Quale la migliore?

27 nov 2011

Spesso mi viene chiesto se è meglio utilizzare la ventilazione a pressione controllata o la ventilazione a volume controllato. Vediamo insieme cosa le differenzia per giungere ad una scelta consapevole.

Premetto che la cosa più importante è avere chiari gli obiettivi da raggiungere con la ventilazione: questi poi si possono raggiungere con qualunque modalità di ventilazione si consosca bene.

Come ben sappiamo, la pressione controllata applica una pressione costante nelle vie aeree per tutta la durata dell'inspirazione. Il risultato è un flusso inspiratorio che inizia con un picco e decresce durante l'inspirazione (fig. 1, a sinistra). Il volume controllato invece genera un flusso costante per tutta la durata dell'inspirazione e per ottenere ciò il ventilatore deve aumentare continuamente la pressione nelle vie aeree (fig. 1, a destra).


Figura 1

 _°_°_°_°_°_°_°_°_°_°_





Le differenze di pressione tra volume controllato e pressione controllata.

Prima conseguenza di questa diversa logica di funzionamento è la differenza nelle pressioni di picco. A volte questo viene presentato come un vantaggio della pressione controllata sul volume controllato, ma lo è davvero?

La pressione di picco è la somma di due pressioni: 1) la pressione che ci serve per generare il flusso più 2) la pressione che espande l'apparato respiratorio.

La pressione che genera il flusso è quella forza che spinge il gas inspirato attraverso tubo tracheale e vie aeree. Essa ha il proprio valore massimo all'inizio della branca inspiratoria e si riduce progressivamente fino ad annullarsi al termine delle vie aeree. Il suo valore dipende dall'entità del flusso e dalle resistenze.

Alla fine della inspirazione la pressione per generare flusso è più elevata in volume controllato che in pressione controllata: infatti in volume controllato abbiamo ancora un flusso più elevato (uguale a quello di tutta la fase inspiratoria) che in pressione controllata, che a fine inspirazione vede il flusso più o meno completamente annullato (fig 1).

La pressione per generare flusso non arriva negli alveoli ma si consuma lungo il tubo tracheale e le vie aeree. Non deve essere considerata come una pressione che può indurre danno polmonare indotto dalla ventilazione (VILI, ventilator-induced lung injury) .

Alla fine della inspirazione, a parità di volume corrente, avremo la stessa pressione negli alveoli sia in volume controllato che in pressione controllata. E questa pressione (indipendente dalla modalità di ventilazione) dipende unicamente da elastanza e volume corrente. Questa pressione può essere stimata facendo un'occlusione delle vie aeree alla fine della inspirazione: nella figura 2 vediamo sopvrapposte due curve di volume controllato (PCV) e pressione controllata (PCV) a parità di volume corrente. Si può notare come le pressioni di picco siano diverse tra loro, mentre le pressioni di plateau sono uguali tra di loro. Stesso plateau, stesso stress.



Figura 2

Quindi pressione controllata e volume controllato hanno, a parità di volume corrente, lo stesso impatto sul danno polmonare, che in realtà è determinato solo da elastanza e volume corrente.  Non lasciamoci trarre in inganno dalla diversità delle pressioni di picco. Si potrebbero fare disquisizioni più approfondite per i polmoni caratterizzati da marcata disomogeneità, ma affronterò l'argomento solo se vedrò che può interessare ai lettori di ventilab.

La pressione controllata fa raggiungere inoltre valori di pressione media delle vie aeree più elevata del volume controllato, a meno che a quest'ultimo non si aggiunga un'opportuna pausa di fine inspirazione. E la pressione media delle vie aeree è correlata all'ossigenazione. Si può quindi dire che in pressione controllata è più semplice ottimizzare pressione media delle vie aeree e ossigenazione.

 _°_°_°_°_°_°_°_°_°_°_



Le differenze di flusso tra volume controllato e pressione controllata.

Il volume controllato assicura l'erogazione di un predeterminato un flusso (e quindi un volume corrente), mentre il flusso che si genera in pressione controllata è variabile e dipende dalle variazioni della costante di tempo del paziente (cioè del rapporto tra resistenza ed elastanza). In alcuni casi può essere preferibile garantire un volume corrente costante: pensiamo ad esempio ai pazienti con trauma cranico ed ipertensione intracranica, dove la regolazione della PaCO2 è un obiettivo clinico importante. In altri casi può essere meglio limitare automaticamente le pressioni ed accettare variazioni del volume corrente, come ad esempio nei pazienti con ARDS ed elevate pressioni di plateau (o transpolmonari).

Un'altra differenza tra pressione controllata e volume controllato è la diversa distribuzione del flusso. Nella pressione controllata il flusso è elevato all'inizio dell'inspirazione, mentre nel volume controllato è uniforme per tutta l'inspirazione. Un elevato flusso inspiratorio iniziale favorisce la sincronia tra paziente e ventilatore se il paziente triggera gli atti respiratori. Quindi la pressione controllata ci può semplificare la sincronia paziente-ventilatore e la riduzione del lavoro respiratorio del paziente. Ovviamente anche un'oculata regolazione del volume controllato può raggiungere gli stessi obiettivi, ma sicuramente serve un occhio più esperto per gestire l'interazione paziente-ventilatore durante volume controllato (1,2).

 _°_°_°_°_°_°_°_°_°_°_




Le ventilazioni a pressione controllata a target di volume.

Quasi tutti i ventilatori hanno forme di ventilazione che rientrano in questa categoria: PCV-VG (GE), PRVC o VGRP (Maquet, Siemens), AutoFlow (Draeger), ecc. In pratica sono normalissime ventilazioni a pressione controllata in cui però il ventilatore continua ad adeguare la pressione applicata per raggiungere un volume prefissato. Quindi le impostiamo come un volume controllato (a parte la pausa) ma funzionano come una pressione controllata: pressione inspiratoria costante e flusso inspiratorio decrescente. In maniera molto semplice aggiungiamo alla pressione controllata il vantaggio principale del volume controllato: il volume costante. Ovviamente le pressioni potranno aumentare o diminuire secondo le necessità.

 _°_°_°_°_°_°_°_°_°_°_



Come scegliere tra volume controllato e pressione controllata.

Detto questo, mi sento di fare questa proposta nella scelta delle ventilazioni controllate ed assistite-controllate:

- scegliere di norma una ventilazione a pressione controllata a target di volume (PCV-VG, PRVC o VGRP, AutoFlow, ecc). E' semplice da impostare ed unisce vantaggi di volume controllato e pressione controllata: garantisce il volume corrente, facilitando sincronia ed ossigenazione grazie al flusso decrescente. A questo punto bisogna solo scegliere il volume corrente ed il I:E giusti...

- quando abbiamo la necessità di limitare la pressione di plateau (esempio siamo già a 30 cmH2O di plateau), utilizzare la pressione controllata. Solitamente impostando PEEP e pressione controllata la cui somma non superi 31-32 cmH2O, ci si garantisce di rimanere sotto i 30 cmH2O di pressione di plateau. Meglio comunque verificare di caso in caso.

Un caro saluto a tutti.

PS: il workshop "La ventilazione non-invasiva: dalle evidenze scientifiche alla pratica clinica" si terrà quasi certamente sabato 28 gennaio 2011. A prestissimo la conferma definitiva.

Bibliografia.

1) Chiumello D et al. Different modes of assisted ventilation in patients with acute respiratory failure. Eur Respir J 2002; 20: 925-33

2) Kallet RH et al. Work of breathing during lung-protective ventilation in patients with Acute Lung Injury and Acute Respiratory Distress Syndrome: a comparison between volume and pressure-regulated breathing modes. Respir Care 2005; 50:1623-31


Read more ...

Avviso importante: rinviato il workshop "La ventilazione non-invasiva: dalle evidenze scientifiche alla pratica clinica"

21 nov 2011

Il workshop "La ventilazione non-invasiva: dalle evidenze scientifiche alla pratica clinica" programmato sabato 17 dicembre è rinviato ad altra data.  Al più presto stabiliremo una nuova data e ne daremo comunicazione.

Mi scuso per l'inconveniente, purtroppo dovuto ad un imprevisto grave problema.

Un saluto a tutti.
Read more ...

Ventilazione meccanica per obiettivi: quando il meglio è nemico del bene.

13 nov 2011

Quando prendo in carico la cura di una persona, mi pongo sempre degli obiettivi da raggiungere. Avere obiettivi chiari è il primo passo per fare le scelte migliori.

Abbiamo sempre chiari gli obiettivi della ventilazione meccanica?

La ventilazione meccanica ha l'obiettivo di supportare le funzioni dell'apparato respiratorio evitando di fare danni (se possibile).

Le funzioni dell'apparato respiratorio da supportare sono due:

  1. ossigenazione

  2. rimozione di CO2


Ragioniamo sugli obiettivi che dobbiamo avere per ciascuna di queste funzioni.

Ossigenazione.


La domanda è: quanto ossigeno serve ai nostri pazienti? Semplicemente un livello di PaO2 che consenta una buona funzione dei nostri organi e tessuti. Sappiamo che l'ossigeno deve arrivare ai mitocondri. L'ossigeno arriva nei capillari (cioè in prossimità dei mitocondri) grazie alla portata cardiaca ed all'emoglobina. Una volta che l'ossigeno è giunto nei capillari, il passaggio ai mitocondri dipende dalla differenza tra la PO2 nel capillare e nel mitocondrio. La PO2 durante il suo tragitto nel capillare si riduce progressivamente a causa della continua cessione dell'ossigeno ai tessuti: è quindi più alta nel versante arterioso rispetto a quello venoso (e l'entità di questo fenomeno è condizionato dal trasporto di ossigeno) (figura 1).



Figura 1

La PO2 dei mitocondri varia tra 4 e 23 mmHg, dipendendo dal tipo di tessuto considerato. Ma, oltre alla differenza di PO2 tra capillare e mitocondrio, c'è un altro fattore che condiziona la diffusione dell'ossigeno ai tessuti: la distanza tra capillare e mitocondri delle cellule (1). Proviamo a pensare a come può variare questa distanza in un soggetto sano e nel paziente edematoso. L'edema è una barriera all'ossigenazione cellulare. Esistono evidenze che la quantità di fluidi somministrati (dopo le prime ore di trattamento) e l'entità dei bilanci idrici positivi sono associati a peggiori outcome (2-5).

Per riassumere: L'ossigenazione dei tessuti dipende sia da fattori polmonari (la PaO2) che da fattori non polmonari (portata cardiaca, emoglobina ed edema). Quello che può fare la ventilazione è assicurare una PaO2 sufficiente a saturare l'emoglobina (vedi post del 31 /10/2011) e generare un sufficiente gradiente di PO2 tra capillari e mitocondri. Si ritiene che una PaO2 sopra 55-60 mmHg ed una corrispondente saturazione arteriosa superiore a 88-90% siano più che sufficienti a questo scopo (6). Dobbiamo quindi evitare di "spingere l'acceleratore" sul ventilatore meccanico per avere delle "belle" PaO2. Cosa ce ne facciamo, se le dobbiamo poi pagare con i danni indotti dalla ventilazione meccanica. Dobbiamo anche evitare di considerare il PaO2/FIO2 un obiettivo a breve termine della ventilazione meccanica: esso descrive unicamente il livello di gravità della disfunzione polmonare, non ci dice se stiamo ventilando bene un paziente. Potremmo infatti adottare strategie ventilatorie che migliorano nel breve periodo il PaO2/FIO2, ma che fanno male al paziente. Un esempio? I pazienti con ARDS migliorano nei primi giorni il PaO2/FIO2 se ventilati con 12 ml/kg di volume corrente rispetto a quando ricevono un volume corrente di 6 ml/kg . Sappiamo però tutti come va poi a finire... (6)

Eliminazione di CO2.


Nei pazienti con insufficienza respiratoria ipossiemica (il cui paradigma è l'ALI/ARDS) non abbiamo bisogno di mantenere 40 mmHg di PaCO2 e 7.40 di pH! Il nostro organismo funziona bene (a volte anche meglio, forse) (vedi post del 24/09/2011) anche a valori di PaCO2 un po' più alti e di pH un po' più bassi. Nei pazienti con ALI/ARDS, se detestiamo l'acidosi respiratoria, possiamo iniziare a preoccuparci se il pH scende al di sotto dei 7.25 (che corrisponde a circa 60 mmHg di PaCO2 in assenza di alterazioni metaboliche del pH). Potremmo essere anche più tolleranti ed accettare anche pH fino a 7.15 (circa 70 mmHg di PaCO2 senza associate alterazioni metaboliche) o addirittura anche inferiori (7). Con l'eccezione dei pazienti con trauma cranico, shock non responsivo alle catecolamine o con con disfunzione ventricolare destra (8).

Diverso è l'approccio ai pazienti con insufficienza respiratoria ipercapnica (un esempio tipico può essere la riacutizzazione della BPCO) o durante la fase di weaning. Se la PaCO2 elevata è associata ad acidosi respiratoria, abbiamo un segno evidente dell'insufficienza della pompa respiratoria (cioè dell'apparato neuromuscolare che muove i polmoni). In questo caso l'obiettivo è il riposo dei muscoli respiratori esauriti da un eccessivo e prolungato carico di lavoro. Quindi dobbiamo dare una ventilazione che garantisca l'abolizione (o quasi) della ventilazione spontanea del paziente per il tempo strettamente necessario a far riposare i muscoli respiratori. Ancora una volta la normalizzazione PaCO2 non è il nostro obiettivo, ma semmai una conseguenza del nostro trattamento.

In conclusione possiamo affermare che nella maggior parte dei casi non è molto difficile raggiungere i due obiettivi della ventilazione meccanica:

  1. raggiungere una PaO2 di almeno 55-60 mmHg (o una saturazione di 88-90%)

  2. avere un pH maggiore di 7.15-7.25


La vera sfida è ossigenare ed eliminare anidride carbonica senza danneggiare l'apparato respiratorio. Dobbiamo stare alla larga sia dal VILI (ventilator-induced lung injury) che dal VIDD (ventilator-induced diaphragmatic dysfunction), che uccidono molte più persone di ipossiemia ed ipercapnia. Evitare la normalizzazione (o addirittura la perfezione) dell'emogasanalisi è spesso il primo passo per raggiungere anche questi obiettivi. Ma di questo ne riparleremo in altre occasioni...

Un caro saluto al popolo di ventilab, una tribù di circa tremila appassionati di ventilazione.

Bibliografia

1) Lumb AB. Nunn’s Applied Respiratory Physiology. Chapter 11: Oxygen, pp. 179-216. Churchill Livingstone, 7th edition (2010).

2) Sakr Y et al. High tidal volume and positive fluid balance are associated with worse outcome in acute lung injury. Chest 2005; 128:3098-108


3) Upadya A et al. Fluid balance and weaning outcomes. Intensive Care Med 2005; 31:1643-7


4) Wiedemann HP et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 2006; 354:2564-75


5) Stewart RM et al. Less is more: improved outcomes in surgical patients with conservative fluid administration and central venous catheter monitoring. J Am Coll Surg 2009; 208:725-35


6) ARDS Network. Ventilation with lower tidal volumes as compared with traditional for acute lung injury and the acute respiratory distress sindrome. N Engl J Med 2000, 342:1301-8


7) Hickling KG et al. Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med 1990; 16:372-7


8) Mekontso Dessap A et  al. Impact of acute hypercapnia and augmented positive end-expiratory pressure on right ventricle function in severe acute respiratory distress syndrome. Intensive Care Med 2009; 35:1850-8

 


Read more ...

Pulsossimetria, PaO2 e disfunzione polmonare.

31 ott 2011

Iris, una sfortunata signora di settanta anni, alcune settimane fa è stata ricoverata nella nostra Terapia Intensiva dopo un'intervento di chirurgia addominale. Siamo stati consapevoli fin dall'inizio che la lesione di Iris poteva essere l'inizio di un calvario senza via d'uscita. Dopo la prima settimana di Terapia Intensiva, si è aperto però qualche spiraglio: infezioni e drenaggi erano a posto e si poteva procedere all'estubazione.

Dopo l'estubazione Iris aveva un normale stato di coscienza, era eupnoica e normocapnica, ma necessitava di ossigenoterapia per correggere l'ipossiemia.. Iris ci ha chiesto, se possibile, di non essere sottoposta ai fastidiosi prelievi arteriosi (non aveva più una linea arteriosa). Per noi però era importante monitorare l'evoluzione della disfunzione polmonare. Nell'equipe c'erano medici ed infermieri concordi nel sostituire le emogasanalisi con la saturazione arteriosa misurata con il pulsossimetro (SpO2).

SpO2 e PaO2 ci possono dare le stesse informazioni per valutare la gravità e l'evoluzione della disfunzione polmonare?

L'indicatore più utilizzato per stratificare la gravità della disfunzione polmonare è il rapporto PaO2/FIO2: viene utilizzato per definire il livello di gravità di ARDS/ALI ed è il marker della disfunzione polmonare del  Sequential Organ Failure Assessment (SOFA). Negli ultimi anni sono stati pubblicati due articoli che supportano l'uso del rapporto SpO2/FIO2 al posto del PaO2/FIO2 (2,3). Il primo di questi studi ci dice che SpO2/FIO2 di 235 e di 315 correlano con PaO2/FIO2 rispettivamente di 200 e 300 per la diagnosi di ARDS e ALI (2). Il lavoro di Pandharipande ha calcolato che, per il computo del SOFA, 100 di PaO2/FIO2 corrisponde a 89 di SpO2/FIO2, 200 di PaO2/FIO2 a 214 di SpO2/FIO2, 300 di PaO2/FIO2 a 357 di SpO2/FIO2 e 400 di PaO2/FIO2 a 512 di SpO2/FIO2 (3).

Dobbiamo credere alla letteratura, usare il SpO2/FIO2 al posto del PaO2/FIO2 ed accontentare Irma, evitandole le punture arteriose?

A mio modo di vedere la risposta è articolata.

I due studi citati hanno numerosi limiti sui quali non mi dilungo. Ne discuteremo eventualmente nei commenti al post.

Osserviamo la curva di dissociazione dell'emoglobina (figura 1):  vediamo chiaramente che, a 7.4 di pH,  la SaO2 cambia molto poco per PaO2 superiori a 70 mmHg, mentre ha rapide variazioni se la PaO2 è inferiore a 60 mmHg.


Figura 1

Facciamo qualche simulazione per decidere se e come possiamo utilizzare la SpO2 al posto della PaO2. Ridisegnamo la curva di dissociazione dell'emoglobina mettendo sull'asse delle ascisse la saturazione (la variabile indipendente, cioè il valore che si conosce) e la PaO2 su quello delle ordinate: ci mettiamo cioè nella condizione di doverr stimare la PaO2 conoscendo la SpO2. Inoltre restringiamo i limiti del grafico ai valori che potremmo realmente incontrare in clinica. Ecco come vediamo le cose:

Figura 2

Abbiamo variazioni molto diverse di SpO2 per analoghe variazioni di PaO2. Infatti la riduzione di 10 mmHg di PaO2 determina la riduzione della SpO2 di circa 1% se il valore iniziale di PaO2 è 90 mmHg. La riduzione di SpO2 diventa del 8-9% se la PaO2 si riduce di 10 mmHg da 55 a 45 mmHg. In altre parole, la SpO2 è sensibile alle variazioni di PaO2 solo per valori iniziali di SpO2 inferiori a 92-93 %. Possiamo quindi utilizzare la SpO2 per monitorare l'evoluzione della disfunzione polmonare solo se ci mettiamo nelle condizioni di avere una SpO2 sempre inferiore a 92-93%. E farlo è semplicissimo: è sufficiente sospendere l'ossigenoterapia. Se il paziente ha insufficienza respiratoria, la SpO2 si assesterà sicuramente sotto questa soglia. E noi potremo evitare di ripetere le emogasalisi con il solo scopo di quantificare la gravità della disfunzione polmonare. E se per 10 minuti avremo una SpO2 tra 80 e 90 %, salvo casi particolari, non dovremo temere alcun problema per i nostri pazienti.


Se ci piace ragionare in termini di PaO2/FIO2, vediamo come la stessa variazione di PaO2/FIO2 si rifletta in modo diverso sulla SpO2 in funzione del livello basale di PaO2:


Figura 3

La riduzione del PaO2/FIO2 da 300 a 200 determina la riduzione di SpO2 del 3 % se partiamo da 120 mmHg di PaO2 (cioè con una FIO2 di 0.4) mentre la SpO2 si ridurrà del 16 % se il livello iniziale di PaO2 è di 63 mmHg (la stessa condizione di prima senza O2 terapia).


Per concludere, possiamo utilizzare la SpO2 ed SpO2/FIO2 al posto di PaO2 e PaO2/FIO2 per monitorare la gravità e l'evoluzione di una disfunzione polmonare solo in assenza di ossigenoterapia (per mantenere la SpO2 inferiore a 92-93%).

Un caro saluto a tutti gli amici di ventilab.

 

Bibliografia.

1) Vincent JL et al. The SOFA score to describe organ dysfunction/failure. Intensive Care Med 1996; 22 : 707-10

2) Rice TW et al. Comparison of the SpO2/FIO2 ratio and the PaO2/ FIO2 ratio in patients with acute lung injury or ARDS. Chest    2007; 132:410-7

3) Pandharipande PP et al. Derivation and validation of SpO2/FIO2 ratio to impute for Pao2/FIO2 ratio in the respiratory component of the Sequential Organ Failure Assessment score. Crit Care Med 2009; 37: 1317-21


Read more ...

Uso di ossido nitrico inalatorio nell’ARDS: quando razionale ed evidenza fanno a pugni

22 ott 2011

In  questi giorni sto esaminando la letteratura recente sull’uso dell’ossido nitrico inalatorio (NO) in terapia intensiva. Colgo l’occasione per coinvolgere gli amici di www.ventilab.it su questo argomento, già incontrato in post precedenti pubblicati sul nostro sito.

L’ossido nitrico è un potente vasodilatatore che agisce attraverso l’aumento della concentrazione di cGMP all’interno delle fibrocellule muscolari lisce delle pareti vascolari[1]. Farmaci che agiscono come donatori di NO, come nitroglicerina e sodio nitroprussiato, vengono correntemente somministrati per via endovenosa, transdermica o transmucosa allo scopo di ridurre la pressione arteriosa e indurre vasodilatazione sistemica, in particolare coronarica. La somministrazione per via inalatoria di NO determina invece riduzione delle resistenze vascolari polmonari e della pressione arteriosa polmonare con minimi effetti sul circolo sistemico. Per questa caratteristica NO è utilizzato in ambito pediatrico/neonatale in svariate patologie cardiopolmonari associate a ipertensione polmonare, e anche nell’adulto in situazioni di disfunzione ventricolare destra da ipertensione polmonare, prevalentemente a seguito di interventi cardiochirurgici[2].

L’utilizzo di NO nell’ARDS è un argomento a oggi ancora controverso. Indubbiamente esiste un valido razionale a favore del suo utilizzo: come schematizzato in figura 1, NO determina vasodilatazione polmonare prevalentemente a livello delle unità alveolari maggiormente areate, mentre non raggiungerebbe in quantità significative i capillari polmonari nelle zone atelettasiche o ingombre di essudato, dove peraltro interviene una reazione di vasocostrizione ipossica. Con questo meccanismo, l’aggiunta di NO alla miscela respiratoria aumenterebbe il flusso ematico attraverso le aree di polmone ventilato e ridurrebbe la quota di shunt destro-sinistro mediante un fenomeno di furto, migliorando l’ossigenazione[1,3].




Figura 1

Effettivamente diverse metanalisi[4,5,6] hanno confermato che l’uso di NO può determinare un transitorio miglioramento dell’ossigenazione (espresso come PaO2/FiO2 a 24 ore dall’inizio del trattamento) in pazienti affetti da insufficienza respiratoria ipossiemica e ARDS. Tuttavia le evidenze fino a oggi disponibili indicano che NO non ha effetti sulla mortalità dei pazienti, né su altri esiti clinici rilevanti come la durata della ventilazione o la durata della degenza, e anzi potrebbe essere addirittura associato a maggiore incidenza di danno renale.

Come si spiega questa discrepanza di risultati? Sono stati ipotizzati fattori farmacocinetici (azione nel circolo sistemico di cataboliti stabili di NO che conservano proprietà vasodilatanti; accumulo locale dose-dipendente di NO, v. figura 2), possibili effetti tossici tempo-dipendenti da NO, e ancora fattori patogenetici tipici della malattia di base (dismissione in circolo di citochine ad azione vasodilatante, come  in corso di sepsi o ARDS)[3]. Vi sono poi anche problematiche metodologiche intrinseche alle metanalisi, in quanto gli studi esaminati non sono del tutto confrontabili, per possibili disomogeneità nella stratificazione della gravità dei pazienti, o disomogeneità nella correttezza della ventilazione protettiva. Dobbiamo inoltre ricordare che i pazienti con ARDS muoiono quasi sempre per insufficienza multiorganica, non per grave ipossiemia refrattaria[3] e questo già basterebbe a spiegare lo scarso impatto dell’uso di NO sulla mortalità.




Figura 2

Dunque è opportuno, sulla base dell’evidenza riportata, respingere tout court l’utilizzo di NO nell’ARDS? Secondo molti esperti [1,3,5,7] no: NO resta un’arma terapeutica importante nel trattamento non di routine ma di salvataggio dell’ipossiemia refrattaria con o senza ipertensione polmonare, purchè

  • sia somministrata per un periodo limitato di tempo (24-72 ore);

  • se somministrata in modo discontinuo si evitino brusche interruzioni nell’erogazione (possibile effetto rebound);

  • si utilizzino le dosi inferiori sufficienti a produrre una risposta clinica accettabile (range 0.1- 80 ppm, meglio < 40 ppm);

  • siano monitorizzati i livelli di NO2 e di metemoglobinemia;

  • il paziente non sia portatore di deficit congenito o acquisito di metemoglobina reduttasi.





Un saluto a tutti gli amici di ventilab.

Bibliografia

  1. Griffiths MJD, Evans TW. Inhaled nitric oxide therapy in adults. N Engl J Med 2005;353:2683-95

  2. Bloch KD et al. Inhaled NO as a therapeutic agent. Cardiovascular Research 2007;75:339–48

  3. Creagh-Brown BC et al. Bench-to-bedside review: Inhaled nitric oxide therapy in adults. Critical Care 2009;13:212-9

  4. Adhikari NK et al. Effect of nitric oxide on oxygenation and mortality in acute lung injury: systematic review and meta-analysis BMJ 2007; 334:779-86

  5. Sokol J et al. Inhaled nitric oxide for acute hypoxemic respiratory failure in children and adults. Cochrane Database of Systematic Reviews 2003, Issue 1. Art No.: CD002787. DOI: 10.1002/14651858.CD002787

  6. Afshari A et al. Inhaled Nitric Oxide for Acute Respiratory Distress Syndrome and Acute Lung Injury in Adults and Children: A Systematic Review with Meta-Analysis and Trial Sequential Analysis. Anesth Analg 2011;112:1411–21

  7. Germann P et al. Inhaled nitric oxide therapy in adults: European expert recommendations. Intensive Care Med 2005; 31: 1029-41

Read more ...

La fibroscopia nella intubazione difficile.

9 ott 2011

L'intubazione difficile è uno dei momenti più difficili e di maggior responsabilità nella vita degli anestesisti. Se l'anestesista non è autonomo nell'intubazione fibroscopica, nella procedura viene coinvolto un collega esperto di endoscopia respiratoria (immagino con sua somma soddisfazione...). Un assiduo (ed apprezzato) lettore di ventilab, pneumologo con esperienza di endoscopia respiratoria, mi ha posto queste tre domande sulla intubazione fibroscopica nella intubazione prevista difficile:

1) quali procedure adotti per ottenere una lieve sedazione pur mantenendo il paziente sveglio?

2) se il tentativo fallisce, e l’intervento non è differibile, come comportarsi ?

3) dopo vari tentativi di intubazione in una procedura “non prevista” difficile, in cui il paziente inizia a presentare cianosi, è appropriata l'intubazione con fibroscopia?

Senza indugio, ecco le mie risposte (per una trattazione esaustiva della gestione dell'intubazione difficile, vedi le linee guida della ASA e della SIAARTI [1,2]):

1) per procedere con l'intubazione fibroscopica è fondamentale che il paziente mantenga il respiro spontaneo. In questo modo, oltre a mantenere l'ossigenazione, si riesce infatti a rendere ottimale la visualizzazione dell'adito laringeo. Molti approcci farmacologici possono consentire di ottenere questo risultato. La mia preferenza va all'associazione fentanyl, midazolam e ketamina. Il dosaggio deve essere valutato caso per caso, ma in linea di massima inizio con la somministrazione in bolo lento di 50-100 mcg di fentanyl e 3-4 mg di midazolam. Se il paziente  non è ancora in grado di accettare la manovra, aggiungo 15-20 mg di ketamina. A questo associo sempre l'anestesia topica dalla narice scelta per l'introduzione del fibroscopio. Ed a questo punto inizio la procedura.

2) se l'intubazione non riesce e l'intervento non è differibile, che fare? Se non si riesce ad intubare con nessun presidio a disposizione, bisogna comunque iniziare l'intervento ventilando in maschera facciale o,  meglio, con la maschera laringea. E se il paziente non è ventilabile, bisogna procedere alla cricotirotomia (una possibile procedura è presentata alla fine post). Non ci sono alternative.

3) l'intubazione fibroscopica è sconsigliata in condizioni di emergenza, soprattutto quando il paziente è cianotico. La cianosi è la conseguenza di una ventilazione assente o gravemente insufficiente: l'intubazione fibroscopica non consente la ventilazione durante la procedura. In questa condizione, è bene tornare al punto 2.

Ricordiamo che l'intubazione tracheale non è un fine, ma un mezzo per ventilare. Quando l'intubazione non è possibile, spesso (per fortuna!) la ventilazione è comunque efficace con maschera facciale o maschera laringea: e questo è quello che ci serve per poter procedere con l'intervento. La protezione delle vie aeree sarà, forse, ridotta (è tutto da dimostrare...), ma di fronte alla necessità di un intervento chirurgico urgente, è un rischio che si può correre.


Nei casi di intubazioni difficile, la maschera laringea è un presidio utilissimo. Alcuni colleghi anestesisti sono ancora restii ad utilizzare in elezione la maschera laringea per paura del rischio di aspirazione polmonare (in realtà simile a quello che si ha con l'intubazione [3]). Ma se non impariamo ad usare benissimo la maschera laringea in elezione, come pensiamo di poterla padroneggiare in urgenza?

Grazie ad Elio per lo spunto del post di oggi. E, come sempre, un saluto a tutti gli amici di ventilab.

E, per finire, un ciao a tutti quelli che hanno partecipato al Corso di Ventilazione Meccanica della scorsa settimana: due giorni intensi e divertenti per tutti!

Bibliografia.

1) Practice guidelines for management of the difficult airway. Anesthesiology 2003; 98:1269-77

2) Accorsi A et al. Recommendations for airway control and difficult airway management. Minerva Anestesiol 2005; 71:617-57

3) Bernardini A et al. Risk of pulmonary aspiration with laryngeal mask airway and tracheal tube. Analysis on 65712 procedures with positive pressure ventilation. Anaesthesia 2009; 64: 1289-94

Read more ...

La ventilazione non-invasiva: dalle evidenze scientifiche alla pratica clinica.

26 set 2011

Poche righe per informare gli amici di ventilab.it di un'iniziativa che abbiamo organizzato in Fondazione Poliambulanza a Brescia la mattina di sabato 17 dicembre 2011.

In questa data si terrà il workshop "La ventilazione non-invasiva: dalle evidenze scientifiche alla pratica clinica".

I relatori principali saranno il prof. Giorgio Conti dell'Università Cattolica del Sacro Cuore di Roma ed il dott. Michele Vitacca della Fondazione Maugeri di Lumezzane. Abbiamo chiesto loro di condensare le evidenze scientifiche e (soprattutto) l'esperienza clinica personale maturata nell'uso della ventilazione non-invasiva.

Terremo distinti due campi di applicazione della ventilazione non-invasiva molto diversi tra loro, per i quali possono non valere le medesime regole. Il prof. Conti si occuperà di ventilazione non-invasiva nella insufficienza respiratoria acuta ipossiemica, il dott. Vitacca della ventilazione non-invasiva nella insufficienza respiratoria cronica ipercapnica.

L'argomento del meeting è di grande attualità ed i rilevanti sono prestigiosi: vi aspetto.

L'iscrizione è gratuita (ma obbligatoria), i posti sono limitati a 200 per la capienza della sala. L'iscrizione può essere fatta online sul sito web della Fondazione Poliambulanza, nella pagina Eventi Formativi (clicca qui per arrivare subito al modulo di iscrizione).

Per vedere la locandina (provvisoria) del meeting, clicca qui.

Un saluto a tutti.

PS: sabato 24 è stato erroneamente inviato agli iscritti un alert per un nuovo post. In realtà il contenuto era solo una bozza iniziale del post correttamente pubblicato domenica 25. Mi scuso per l'inconveniente e vi invito a discutere il caso clinico presentato nel post.

















Read more ...