ONE LUNG VENTILATION

16 mag 2015


La ventilazione monopolmonare (“one lung ventilation” o OLV) è parte integrante delle tecniche anestesiologiche nella chirurgia del polmone e dell’esofago toracico nelle quali, come nella maggior parte della chirurgia toracoscopica, sono richiesti il decubito laterale del paziente, l’apertura del torace ed il collasso del polmone “superiore” (“non dependent”) per consentire l’atto chirurgico. L’ipossia è la problematica 
di maggior rilievo durante questo tipo di ventilazione e chirurgia e si presenta in circa il 10% dei pazienti; restano ancora dibattuti quali provvedimenti siano adeguati a contrastarla (se e quanta PEEP, FiO2 uguale o inferiore a 1, reclutamenti). E’ però progressivamente cresciuta la consapevolezza che l’insorgenza d’insufficienze d’organo postoperatoria può essere correlata alla condotta intraoperatoria e prevenuta anche con l’utilizzo di bassi volumi correnti.

Ipossia e OLV

Due fenomeni sono determinanti nella genesi dell’ipossia (1)

  • lo shunt vero

  • il mismatch ventilazione/perfusione

Inoltre la posizione sul fianco (2) influisce, con l’effetto della gravità, sia sulla distribuzione del flusso sia sulla creazione di atelettasie; in particolare la posizione sul fianco consente migliore ossigenazione rispetto alla supina e di questo si deve tener conto qualora la ventilazione monopolmonare sia richiesta in posizione supina. Lo shunt vero è determinato dal fatto che il polmone non dipendente è escluso dalla ventilazione ma perfuso; è limitato dal fenomeno della vasocostrizione ipossica (HPV). Nel preoperatorio va ottimizzato il trasporto d’ossigeno e la portata cardiaca mantenuta stabile intraoperatoriamente, incrementi sovranormali della gittata possono aggravare lo shunt per riduzione della vasocostrizione ipossicae per l’apertura di ulteriori vasi in territori non perfusi. Il mismatch ventilazione/perfusione, è condizionato dal dereclutamento o dalla sovradistensione. Il dereclutamento incrementa la quota di perfusione rispetto al volume alveolare; la sovradistensione riduce la perfusione per “strizzamento” dei vasi alveolari e riduzione della perfusione di alveoli ventilati, contemporaneo incremento delle resistenze polmonari e shunt verso distretti non ventilati.

Va ormai sempre più affermandosi il concetto che volumi correnti “ridotti” (6-8 ml pro Kg di peso corporeo ideale nella ventilazione bipolmonare e 5-6 nella monopolmonare) sono in realtà fisiologici. Allo stesso modo si stanno imponendo evidenze che volumi correnti elevati sono certo efficaci nel determinare migliori ossiemie, ma sicuramente in grado di scatenare risposte infiammatorie responsabili di complicanze postoperatorie polmonari ed extrapolmonari, facendo seguito a quanto ormai acquisito per l’ARDS.

Nella produzione scientifica più recente viene quindi consigliato di utilizzare, in anestesia ed in particolare in ventilazione monopolmonare, volumi correnti bassi con PEEP adeguata e manovre di reclutamento, in associazione con FiO2 inferiori (almeno in partenza) a 1.

Tuttavia, se i principi fisiopatologici sono chiari, è difficile trovare in letteratura indicazioni chiare ed applicabili in clinica per la gestione della ventilazione monopolmonare. Quindi mi sono parsi degni d’attenzione due articoli pubblicati lo scorso anno.

Attenti a quei due… trial

Nel primo (3) 12 pazienti sono stati sottoposti in maniera sequenziale a due modalità di ventilazione, definite “convenzionale” e “open lung“, in tre fasi dell’anestesia: bipolmonare supino, monopolmonare in decubito laterale con toracotomia, riespansione del polmone dopo resezione polmonare. In entrambi i gruppi il volume corrente era di 5-6 ml/Kg e la ventilazione “open lung” era in pressione controllata con rapporti I:E di 2:1 – 4:1 facendo in modo che ogni inspirazione cominciasse quando il flusso espiratorio del respiro precedente fosse arrivato a 0 L/min.



La P di lavoro (Paw) è stata inizialmente fissata a 30 cm H20, un valore arbitrariamente selezionato per il reclutamento polmonare, e la pressione di fine espirazione (RP) è stata regolata per mantenere un Vt di 5-6 ml/kg. Dopo 2 minuti, la Paw veniva ridotta a step di 2 cm H20 e la RP regolata, a ogni livello,  per mantenere un Vt = 5-6 ml/kg.  Ad ogni livello di pressione, la Compliance statica è stata calcolata come Vt / (Paw – RP).  La Paw è stata registrata a flusso “0” (equivalente ad un plateau prolungato in VCV).  Paw e RP sono stati quindi impostati al livello che ha prodotto la maggior compliance (cioè il volume corrente desiderato con la minor differenza di pressione) del sistema respiratorio.

Le conclusioni sono abbastanza minimaliste e ci dicono che questa tecnica (open lung) studiata nella ventilazione monopolmonare ottimizza la meccanica respiratoria e migliora gli scambi gassosi.

Nel secondo lavoro (4) trenta pazienti sono stati randomizzati in due gruppi, ventilati con 8 ml/Kg e poi con 5-7 in monopolmonare: entrambi ricevevano una manovra di reclutamento all’inizio e alla fine della ventilazione monopolmonare. Il gruppo di controllo veniva ventilato con PEEP = 5 cmH2O mentre quello di studio con una PEEP personalizzata grazie ad un trial decrementale. In particolare veniva impostata una ventilazione a pressione controllata con 20 cm H2O e PEEP = 5 incrementata di 5 cm H2O alla volta ogni dieci respiri fino a 20: una volta raggiunto il valore di 40 cmH2O (20 di PCV + 20 di PEEP) questa veniva mantenuta per 40 secondi. A questo punto veniva ridotta la PEEP di 2 cmH2O alla volta ogni due minuti, fino a ottenere la miglior Compliance (dinamica). Quindi dopo una nuova manovra di reclutamento, si ventilavano i pazienti in volume controllato con la miglior PEEP individuata.


Gli Autori concludono che, durante la ventilazione monopolmonare, il miglioramento dell’ossigenazione dopo reclutamento è meglio mantenuto dall’impiego di una PEEP individualizzata rispetto ad una PEEP standard.

Quindi quali outcome, in entrambi gli studi, variazioni di parametri fisiopatologici e nessuna incidenza di complicanze, mortalità e quant’altro!

Cosa possiamo imparare?

I due trial utilizzano metodiche di ventilazione tra loro diverse, uno anche poco usuali in anestesia come i rapporti invertiti, e caratterizzate dall’uso combinato di più provvedimenti (reclutamenti, PEEP e misura della compliance) e questo può rendere difficile identificare l’efficacia dei singoli fattori. Finora l’applicazione di una PEEP standard, nei vari trial su pazienti in anestesia e non solo in ventilazione monopolmonare, ha dato risultati imprevedibili in termini di ossigenazione. I due trial raggiungono risultati “limitati” ma sono interessanti per il metodo che possono insegnarci e cui possiamo approcciarci con senso critico. Ritengo infatti che l’approccio proposto, basato sulla ricerca della miglior compliance e personalizzazione della PEEP, abbia l’innegabile vantaggio di:

  • minimizzare il mismatch evitando il dereclutamento o la sovradistensione del polmone

  • lasciarci scegliere, solo a questo punto, quanta FiO2 è necessaria per ottenere la PaO2 desiderata

Confermano inoltre la mia esperienza che non è vero che più è grave l’ipossiemia maggiore deve essere la PEEP.

L’uso dei reclutamenti si è dimostrato utile in alcune categorie di pazienti in anestesia (obesi, laparoscopia) ma non mi sento di consigliarla come manovra routinaria. Diverso è il caso del paziente gravemente ipossico e che necessita di alte FiO2, come può accadere nella ventilazione monopolmonare.

Per quanto riguarda la prevenzione delle insufficienze d’organo postoperatorie c’è ormai consenso sull’impiego di volumi correnti “fisiologici”. Pur non potendo traslare acriticamente le pratiche adottate in terapia intensiva, è anche vero che, nei pazienti critici, la personalizzazione della PEEP (5) e l’impostazione della ventilazione ricercando la migliore compliance (6) hanno dato risultati favorevoli in termini di insufficienze d’organo e di outcome e che questa potrebbe essere una pratica anestesiologica altrettanto efficace in pazienti chirurgici ad alto rischio, per esempio quelli sottoposti a ventilazione monopolmonare.

Un saluto a tutti gli amici di Ventilab.

Bibliografia

  1. Levin AI et al.Arterial oxygenation and one-lung anesthesia. Curr Opin Anaesthesiol 2008, 21:28–36

  2. Szegedi LL et al. Gravity is an important determinant of oxygenation during one-lung ventilation.Acta Anaesthesiol Scand 2010; 54: 744–750

  3. Downs JB et al. Open lung ventilation optimizes pulmonary function during lung surgery. journal of surgical research 2014; 192:242-49

  4. Carlos Ferrando et al. Setting Individualized Positive End-Expiratory Pressure Level with a Positive End-Expiratory Pressure Decrement Trial After a Recruitment Maneuver Improves Oxygenation and Lung Mechanics During One-Lung Ventilation. Anesth Analg 2014;118:657–65

  5. Villar J et. A high positive end-expiratory positive pressure, low tidal volume ventilatory strategy improve uotcome in persistent acute respiratory distress syndrome: A randomized, controlled trial. Crit Care Med 2006; 34:1311-1318.

  6. Amato M. et al. Driving Pressure and Survival in the Acute Respiratory Distress Syndrome.N Engl J Med 2015;372:747-55.

Read more ...

Pressione venosa centrale: dalla fisiologia alla clinica.

3 mag 2015


“Perché il precarico si può misurare tramite la pressione venosa centrale?”: questa è la domanda finale che mi ha posto, dopo una serie di ben circostanziate considerazioni, Lorenzo, uno studente in Infermieristica di Roma.

La domanda di Lorenzo è tutt’altro che banale: spesso infatti la curva di funzione cardiaca di Frank-Starling ha sull’asse orizzontale indifferentemente la pressione venosa centrale o il volume di fine diastole (figura 1). Sembrerebbe quindi che il precarico possa essere effettivamente espresso allo stesso modo da pressione e volume. E’ proprio così?



Figura 1.

Nel post di oggi cercherò di dare una risposta a questa domanda e di affrontare alcune implicazioni cliniche della pressione venosa centrale, una delle variabili fisiologiche più usate ed abusate nella cura dei pazienti critici.

La pressione venosa centrale.



Figura 2.

La pressione venosa centrale è la pressione dell’atrio destro, struttura in cui affluisce tutta la circolazione venosa sistemica. Durante la diastole la valvola tricuspide rimane aperta ed il sangue può fluire liberamente dall’atrio al ventricolo destro che quindi, in questa fase del ciclo cardiaco, si comportano come un’unica cavità (figura 2). Durante la diastole atrio e ventricolo destro hanno pressioni simili tra loro, che diventano esattamente uguali alla fine della diastole (area azzurra nella figura 3).



Figura 3.

Quindi la pressione venosa centrale ci dà informazioni sulla pressione in atrio destro e sulla pressione del ventricolo destro al termine della diastole.

La pressione transmurale atriale destra.

La pressione venosa centrale è la somma di due pressioni: 1) la pressione che il sangue esercita sulle pareti interne di atrio e ventricolo (la pressione che distende le cavità cardiache) e 2) la pressione che agisce sulle pareti esterne di atrio e ventricolo, determinata dalla pressione pleurica e pericardica (la pressione che comprime le cavità cardiache).

La pressione esterna al cuore può avere un ruolo importante nel determinare la pressione venosa centrale. Pensiamo ad esempio ad un paziente con tamponamento cardiaco: la pressione venosa centrale aumenta per l’effetto della pressione che comprime il cuore dall’esterno. In questo caso il volume del ventricolo destro (RV) sarà chiaramente ridotto pur in presenza di una elevata pressione venosa centrale (figura 4).



Figura 4.

Una situazione analoga è riscontrabile durante la ventilazione a pressione positiva. L’aumento della pressione intratoracica determina un aumento della pressione venosa centrale associato alla riduzione del volume delle cavità cardiache di destra. Ad esempio nella figura 5 si può osservare che la dimensione delle camere cardiache (valutata alla RMN) si riduce di circa il 20% passando da 0 a 10 cmH2O di pressione delle vie aeree e di un altro 20% passando da 10 a 20 cmH2O (Am J Physiol Heart Circ Physiol 2013; 305: H1004 –H1009).



Figura 5.

Abbiamo visto come sia inaffidabile relazione tra pressione venosa centrale e volume cardiaco, soprattutto nei pazienti sottoposti a ventilazione a pressione positiva. E’ evidente che l’unica pressione che ha una qualche relazione diretta con il volume cardiaco è quella che prima abbiamo definito la pressione che distende il cuore e che in fisiologia è definita pressione transmurale.

Da un punto di vista matematico è molto semplice calcolare la pressione transmurale: si deve fare la differenza tra la pressione venosa centrale e la pressione esterna all’atrio. Se ad esempio avessimo una pressione venosa centrale di 15 cmH2O ed una pressione esterna all’atrio destro di 10 cmH2O, la pressione transmurale sarebbe di 5 cmH2O.

Il calcolo della pressione transmurale è semplice, è però difficile stimare la pressione esterna all’atrio destro. Infatti potrebbe essere un valore assimilabile alla pressione pleurica, ma sappiamo che la pressione pericardica non è uguale alla pressione pleurica, ed in alcuni casi può essere molto diversa da questa (come ad esempio nel tamponamento cardiaco). In assenza di malattie pericardiche, potrebbe comunque essere forse un’approssimazione clinicamente accettabile assumere la pressione pleurica come stima della pressione esterna al cuore. La pressione pleurica può a sua volta essere approssimata alla pressione esofagea. Di approssimazione in approssimazione potremmo quindi arrivare a conoscere la pressione transmurale dell’atrio destro.

Il precarico.



Figura 6.

Il precarico (preload) di un muscolo striato è definito come il carico ad esso applicato prima della contrazione (figura 6). La conseguenza del precarico è l’allungamento della fibra muscolare prima dell’inizio della sua contrazione. Per semplificare possiamo dire che il precarico è rappresentato dalla lunghezza della fibra muscolare a riposo.

Sappiamo bene che, per fenomeni di tensione passiva e allineamento miofibrillare ben descritti nei libri fisiologia, la tensione sviluppata da una fibra muscolare striata durante la contrazione è funzione della sua lunghezza iniziale: tanto più è allungata una fibra muscolare prima di contrarsi, tanta più forza essa sviluppa durante la contrazione (figura 7) (come si può vedere nella figura questo non è più vero quando la fibra muscolare supera la sua lunghezza ottimale).



Figura 7.

Applichiamo questi concetti al muscolo cardiaco. La lunghezza delle fibre muscolari cardiache prima dell’inizio della loro contrazione è proporzionale al volume cardiaco a fine diastole, che quindi rappresenta la stima più accurata del precarico: più è grande il volume del ventricolo, maggiore è la lunghezza delle fibre muscolari nella sua parete. Di conseguenza più è grande il ventricolo alla fine della diastole (=maggiore è il precarico), maggiore è la forza da esso sviluppata durante la sistole e quindi maggiore la gittata sistolica (stroke volume) (figura 1).

Precarico, pressione venosa centrale e pressione transmurale dell’atrio destro.

Veniamo ora alla domanda di Lorenzo: è giusto descrivere il precarico con la pressione venosa centrale?

La pressione venosa centrale non dice nulla sul precarico perché, come abbiamo visto in precedenza, non rappresenta la pressione transmurale dell’atrio destro (in particolare nei pazienti critici sottoposti a ventilazione meccanica).

Ma se anche avessimo la possibilità di stimare la pressione transmurale, non sapremmo se nel paziente che stiamo osservando questa corrisponde ad un volume cardiaco normale, basso o elevato. Questo perché non ne conosciamo la compliance cardiaca. Nella figura 8 sono schematizzate tre diverse compliance (le curve nera e rosse): allo stesso volume di fine diastole (EDV), che potrebbe essere quello fisiologico, in relazione alle diverse compliance corrispondono pressioni telediastoliche (EDP) completamente diverse: da pochi mmHg a più di 30 mmHg.



Figura 8.

Questo vuol dire che quando vediamo una pressione di 10 mmHg (la seconda linea verde orizzontale tratteggiata) potremmo avere un volume cardiaco molto basso (se la compliance è ridotta) o molto alto (se la compliance è aumentata).

Nonostante questo, in molti studi fisiologici (anche di importanza fondamentale) le modificazioni della pressione venosa centrale sono state assimilate alle variazioni del precarico del ventricolo destro. Erano forse Starling e Guyton dei fisiologi superficiali? Ma se lo hanno fatto loro, allora possiamo fare anche noi la stessa equivalenza tra precarico e pressione venosa centrale anche nella pratica clinica, considerando il fatto che anche autorevoli linee guida suggeriscono la somministrazione di fluidi finalizzata al raggiungimento di un certo valore di pressione venosa centrale (sigh…).



Figura 9.

Ricordiamo innanzitutto che spesso negli studi fisiologici classici, come ad esempio quello di Starling del 1914 (figura 9), è stata misurata la pressione in atrio destro in cuori isolati, cioè al di fuori del torace. In questo caso la pressione venosa centrale è evidentemente uguale alla pressione transmurale dal momento che non vi è alcuna pressione esterna al cuore (oltre a quella atmosferica).

Consideriamo come di solito procedono questi studi fisiologici: si prende un cuore e si fa variare con alcuni espedienti la sua pressione di riempimento (in questo caso ci si può accontentare della pressione venosa centrale, se rimane costante la pressione esterna al cuore). E’ evidente che in quel cuore e in quel momento ad una pressione venosa centrale più elevata corrisponderà (entro certi limiti) un volume ventricolare destro a fine diastole più elevato: indipendentemente dalla compliance, nello stesso soggetto un aumento di pressione è associato ad un aumento di volume (seppur di entità imprecisata).

Se leggiamo correttamente il grafico in figura 1 (tipico prodotto di questo tipo di esperimenti), possiamo affermare che il progressivo aumento della pressione venosa centrale, corrispondendo in quel cuore ad un dato aumento di volume cardiaco, produrrà un aumento di stroke volume.

Ma quel grafico non ci dice che un valore di pressione venosa centrale è meglio di un altro. Tu, come la maggior parte delle persone che stanno leggendo questo post, hai una pressione venosa centrale di circa 0 mmHg. E probabilmente stai molto bene. Se io ti volessi aumentare la pressione venosa centrale, ad esempio, a 8 mmHg (sigh…) dovrei faticare un sacco per farti stare peggio di come stai ora. In altre parole, il concetto espresso dalla relazione in figura 1 dice solamente che entro certi limiti la portata cardiaca varia proporzionalmente al precarico. La sua trasposizione clinica corretta è che in alcuni soggetti con una bassa portata cardiaca, questa potrebbe essere aumentata con l’aumento del precarico. Nulla di più, nulla di meno, nessun numero magico di pressione venosa centrale, nessun valore sensato da poter mettere sull’asse della pressione venosa centrale.

La curva di Frank-Starling in figura 1 non ci dice che quale sia il valore ottimale di precarico nè in termini di pressione e nemmeno in termini di volume. Anche perchè, prima del precarico, dovremmo definire quale è il livello ottimale di portata cardiaca (che, di norma, non è certo quello più elevato che il paziente possa raggiungere!)… Insomma, visto che non possiamo dire quale sia il precarico “giusto”, perchè continuare a scervellarci con gli indici di precarico (volumetrici o pressometrici che siano?)

Il valore clinico della pressione venosa centrale.

Dopo quanto detto potrebbe sembrare che la pressione venosa centrale abbia una scarsa utilità clinica. Invece la pressione venosa centrale è certamente utile quando la utilizziamo per quello che è: il valore assoluto della pressione in atrio destro. E questa è una pressione importantissima che è opportuno conoscere nei pazienti critici.

Infatti dobbiamo essere consapevoli che una elevata pressione venosa centrale (ad esempio > 10 mmHg) è da evitare (quando non è inevitabile…). Infatti un elevato valore di pressione venosa centrale (indipendentemente dalla pressione transmurale e dal precarico) può essere di per sé un problema. Se la pressione venosa centrale è elevata, la pressione nel sistema venoso periferico deve essere ancor più elevata per consentire al ritorno venoso di fluire, per differenza di pressione, verso l’atrio destro. Ed a sua volta le pressioni nel circolo capillare devono essere ancor più elevate delle pressioni venose in cui il sangue capillare si scarica. Ne consegue che l’aumento della pressione idrostatica capillare sbilancia le forze descritte nell’equazione di Starling (figura 10) verso la formazione di edema tissutale e conseguente ipossia cellulare (vedi post del 13/11/2011).



Figura 10.

Quindi il nostro obiettivo clinico dovrebbe essere volto principalmente alla maggior riduzione possibile della pressione venosa centrale fino al punto in cui questo non pregiudichi una sufficiente perfusione tissutale. (ricorda che tu in questo momento hai una pressione venosa centrale vicina a 0 mmHg e stai bene)

Inoltre il riscontro di elevati valori di pressione venosa centrale deve indirizzarci verso un ragionato processo di diagnosi differenziale. Riprendendo i concetti prima esposti, dobbiamo valutare se la causa sia una compressione dall’esterno del cuore destro (versamento pericardico? elevata pressione intratoracica?), ridotta funzione del cuore di destra (infarto destro? miocardiopatia?), aumento del post-carico del ventricolo destro (ipertensione polmonare?), riduzione della compliance ventricolare (disfunzione diastolica), elevato precarico (sovraccarico di fluidi o disfunzione ventricolare?), valvulopatia (insufficienza tricuspidale? stenosi polmonare?).

Quando la pressione venosa centrale non è alta, essa non è di per sé un problema, non crea alcun ostacolo al ritorno venoso. In caso di shock bisogna valutare se l’aumento di pressione venosa centrale, che può essere ottenuto con la somministrazione di fluidi o di vasocostrittore (vedi post del 30/04/2013), si associ ad un miglioramento della portata cardiaca e della perfusione periferica.

A mio modo di vedere, la principale implicazione terapeutica della pressione venosa centrale è quella di guidare nello “svuotamento” del paziente, compatibilmente con una adeguata perfusione tissutale, piuttosto che nel “riempimento“, strategia veramente priva di qualsiasi razionale fisiologico ed evidenza clinica.

Conclusioni.

Tirando le somme alla fine di questo lunghissimo post, penso che due concetti siano sufficienti per utilizzare correttamente la pressione venosa centrale:

1) conoscere la pressione venosa centrale non ci può dire nulla sul precarico di un paziente e sulla sua necessità di aumentarlo: quindi non è utilizzabile come “indice di riempimento

2) la pressione venosa centrale diventa un problema di per sé quando è elevata perché condiziona la formazione di edema. In questo caso dobbiamo, dopo aver ricercato le cause del suo aumento, fare di tutto per ridurla il più possibile, compatibilmente con il mantenimento di un’adeguata portata cardiaca e perfusione tissutale. Possiamo quindi vedere la pressione venosa centrale come un “indice di svuotamento”.

Come sempre, un sorriso 🙂 a tutti gli amici di ventilab.

Read more ...