Il vero significato del trigger espiratorio

27 dic 2017



Una caratteristica peculiare della pressione di supporto è il modo in cui il ventilatore meccanico decide il termine dell’inspirazione (il cosiddetto ciclaggio). Unica tra tutte le modalità di ventilazione, la pressione di supporto è infatti ciclata a flusso ed il trigger espiratorio è il segnale che utilizza per questo scopo.

Oggi vedremo cosa significaciclata a flusso” e ” trigger espiratorio“; ma soprattutto rifletteremo sul significato e sull’utilizzo clinico di queste funzioni. E capiremo come possa essere poco sensato quello che solitamente ci si racconta…

Ciclaggio a flusso e trigger espiratorio (versione canonica)

Durante tutte le modalità di ventilazione controllate ed assitite-controllate, la durata dell’inspirazione è determinata dal tempo inspiratorio*. Sono quindi definite come “ciclate a tempo“. In questo caso tutte le inspirazioni hanno una durata fissa, sempre uguale, ed il paziente è obbligato a rimanere in inspirazione per il tempo che abbiamo impostato: il controllo della durata della inspirazione è nella mani del medico (e del ventilatore) ed il paziente si deve adeguare. Questo vincolo non è, di per sè, nè un bene nè un male: può essere un punto di forza o un limite in relazione agli obiettivi clinici ed all’interazione paziente-ventilatore.

La pressione di supporto invece non ha nessuna impostazione del tempo inspiratorio** perchè è “ciclata a flusso“. Questo termine significa che il ciclaggio (cioè il passaggio dall’inspirazione all’espirazione) è guidato dal flusso inspiratorio.

La pressione di supporto è una ventilazione pressometrica, ed è quindi caratterizzata da un flusso inspiratorio decrescente (in assenza di attività inspiratoria del paziente). Un picco di flusso inspiratorio viene raggiunto all’inizio dell’inspirazione, quindi il flusso decresce, interrompendosi quando raggiunge il trigger espiratorio. Il trigger espiratorio è espresso come percentuale di flusso rispetto al picco. Vediamo un esempio in figura 1, in cui è rappresentata la curva di flusso di una pressione di supporto con trigger espiratorio del 30%: il picco di flusso è di 45 l/min ed il flusso a cui si attiva il trigger espiratorio (quando cioè il flusso repentinamente scende a zero, trattino rosso) è 15 l/min, cioè il 30% del valore di picco.



Figura 1

A questo punto è facile capire come la riduzione del trigger espiratorio (cioè della percentuale rispetto al piccodi flusso) possa portare ad un prolungamento dell’inspirazione, ed invece un aumento del trigger espiratorio ad una sua riduzione. Il processo è rappresentato in figura 2, in cui è riportata in giallo la durata dell’inspirazione: essa aumenta da 0.6 a 1.2 secondi riducendo il trigger espiratorio dal 50% al 10%.

Figura 2.

Ma ha senso pensare in questo modo al trigger espiratorio? Nella pratica clinica funziona veramente così?

Significato ed utilizzo clinico del ciclaggio a flusso

Negli anni ottanta del secolo scorso entrò nel mondo della ventilazione meccanica il Servo Ventilator 900C Siemens (figura 3), una macchina per certi versi rivoluzionaria e con la novità della ventilazione a pressione di supporto e quindi del ciclaggio a flusso. Rivederlo mi emoziona sempre: su questa macchina ho iniziato ad amare ventilazione meccanica e meccanica respiratoria.

Come si può vedere dallo scarno pannello dei comandi, nel ventilatore che ha “inventato” la pressione di supporto era assente l’impostazione del trigger espiratorio, che era di default fisso al 25%. Oggi i nostri moderni ventilatori  ci consentono di impostare il trigger espiratorio a valori che possono variare anche dal 1% al 80%. La regolazione del trigger espiratorio è un reale passo avanti o uno degli inutili gadget dei ventilatori meccanici? Potremo rispondere a questa domanda alla fine del post.


Figura 3

Se ci pensiamo bene, l’unica vera innovazione della pressione di supporto è il ciclaggio a flusso. Infatti, anche senza pressione di supporto, l’assistenza inspiratoria pressometrica tutta triggerata dal paziente si può tranquillamente ottenere impostando una pressione controllata con frequenza respiratoria molto bassa e trigger inspiratorio sensibile; di fatto tutti gli atti respiratori sono triggerati dal paziente e con supporto pressometrico.

Quindi la pressione di supporto è stata inventata per avere il ciclaggio a flusso. Ma perchè mai qualcuno ha voluto inventare il ciclaggio a flusso? Perchè il ciclaggio a flusso consente al paziente di determinare la durata dell’inspirazione: si abbandona la logica del ciclaggio a tempo, cioè di un tempo inspiratorio rigido, immutabile e definito dal ventilatore, per passare alla flessibilità del ciclaggio a flusso, dove la durata dell’inspirazione è determinata dal paziente atto per atto respiratorio. Ed il trigger espiratorio è lo strumento sfruttato per ottenere tutto questo.

Adesso torna alla figura 2. Ti sembra che il ciclaggio a flusso sia utilizzato per consentire al paziente di definire spontaneamente, respiro per respiro, la durata dell’inspirazione? A me non sembra proprio: in questo modo si torna ad attribuire al ventilatore il compito di decidere la durata dell’inspirazione. Un risultato che possiamo ottenere tranquillamente con un normale ciclaggio a tempo, impostando quindi un bel tempo inspiratorio sul ventilatore. Peraltro nota una cosa: il controllo della durata dell’inspirazione utilizzando il ciclaggio a flusso, come vedi in figura 2, è possibile solo se si ottiene una bella curva di flusso decrescente. Come ormai ben sanno gli amici di ventilab, questo si verifica solo quando manteniamo il paziente sostanzialmente passivo durante l’inspirazione, condizione che spesso dovremmo cercare di evitare durante la ventilazione assistita (vedi post del 10/09/2016).

Quando ventiliamo con una pressione di supporto un  paziente che mantenga una buona attività dei muscoli inspiratori, come ben sappiamo la curva di flusso inspiratorio smette di avere un profilo decrescente e presenta invece una concavità verso il basso. Quando siamo in questa condizione, il trigger espiratorio influenza davvero la durata dell’inspirazione? Vediamolo nella figura 4.

Figura 4

La curva di flusso ha un picco inspiratorio iniziale di 40 l/min. Dopo il raggiungimento del picco, il flusso inspiratorio non decresce linearmente verso il punto di ciclaggio, ma è mantenuto elevato dall’attività dei muscoli inspiratori (per dettagli rivedi nuovamente il post del 10/09/2016). Nella parte finale dell’inspirazione, il flusso scende quasi verticalmente verso lo zero. In questa fase agisce il trigger espiratorio: quando il flusso raggiunge il valore impostato, finisce l’inspirazione ed inizia l’espirazione. Nel caso in figura 4 il trigger espiratorio era impostato al 10% del picco di flusso, quindi a 4 l/min per il respiro preso in considerazione. A questo livello di flusso è disegnata la linea tratteggiata orizzontale rossa. Il ciclaggio avviene quanto viene raggiunto questo flusso inspiratorio (tratto verticale rosso). Quando sarebbe terminata l’inspirazione se avessimo impostato un trigger espiratorio molto diverso, ad esempio il 50%? In questo caso il flusso a cui avverrebbe il ciclaggio sarebbe la metà del picco inspiratorio, cioè 20 l/min: a questo livello è disegnata la linea orizzontale tratteggiata gialla. Possiamo facilmente vedere come il momento in cui il flusso inspiratorio raggiunge questo valore (identificato sull’asse orizzontale del tempo dalla linea tratteggiata verticale gialla) sia solo minimamente diverso da quello determinato dal trigger al 10%.

In sintesi: quando il paziente è attivo durante l’inspirazione, il trigger espiratorio non modifica significativamente la durata dell’inspirazione. Al contrario questo accade quando il paziente è passivo, come abbiamo visto nella figura 2. Ma quando un paziente è passivo durante l’inspirazione, che vantaggio c’è nel fare una pressione di supporto? Se vogliamo controllare noi la durata dell’inspirazione, non è più semplice ed immediato scegliere una ventilazione ciclata a tempo, decidendo esplicitamente quanto far durare l’inspirazione?

Riassumendo: l’unica vera innovazione della pressione di supporto è stato il controllo, respiro per respiro, della durata dell’inspirazione esercitato dal paziente. Abbiamo capito che questo è realmente possibile solo quando il paziente mantiene una buona attività durante tutta la fase inspiratoria. Ed abbiamo visto che in queste condizioni la variazione del trigger espiratorio ha una influenza trascurabile sulla durata dell’inspirazione.

A questo punto possiamo ripondere consapevolmente alla domanda lasciata in sospeso in precedenza: è stato un progresso reale passare dal trigger espiratorio fisso al 25% alla possibilità di variarlo dal 1 al 80%? A mio parere no: se vogliamo controllare la durata della inspirazione meglio un ciclaggio a tempo. La “mission” del ciclaggio a flusso è invece quella di togliere a noi il controllo della durata dell’inspirazione per lasciarla al paziente. In questo l’inventore del ciclaggio a flusso è stato veramente geniale: era perfettamente consapevole dell’effetto dell’attività del paziente sulla curva di flusso e capì che quando il paziente avesse smesso di inspirare (cioè rilasciato i muscoli inspiratori e/o attivato i muscoli espiratori), il flusso inspiratorio sarebbe crollato rapidamente. E quindi il segnale critico per sincronizzare l’espirazione del paziente con quella del ventilatore era cogliere “al volo” questo calo repentino di flusso inspiratorio: ripeto, GENIALE! E fissare come criterio la riduzione del flusso inspiratorio al 25% del picco di flusso fu una una soluzione semplice e ragionevole.

Un’ultima riflessione, forse un po’ complessa, ma veramente interessante: utilizzare il trigger espiratorio per modificare la durata dell’inspirazione (come abbiamo visto nella figura 2) produce necessariamente una asincronia di termine, in paricolare un ciclaggio ritardato. Non abbiamo tempo per approndire ora questo aspetto, ma teniamone conto. Gli studi che hanno documentato il ciclaggio ritardato durante pressione di supporto probabilmente hanno fatto un utilizzo “contro natura” (in senso stretto) della pressione di supporto, associando la passività del paziente al trigger a flusso: in queste condizioni è implicita l’asincronia. Per chiarire meglio questo aspetto potrei fare prossimamente un post sulle asincronie di termine.

E’ giunta l’ora di concludere, e facciamolo come sempre con le implicazioni pratiche di quello che abbiamo detto:

  • se vogliamo mantenere un paziente poco attivo e controllare la durata dell’inspirazione, non abbiamo bisogno della pressione di supporto: possiamo utilizzare in modo semplice ed efficace una ventilazione a pressione controllata con una frequenza respiratoria minima ed un tempo inspiratorio ragionevole (tra 0.8″ e 1″);
  • se l’obiettivo principale è la costante sincronia paziente-ventilatore, allora è molto semplice ed efficace utilizzare la pressione di supporto con paziente attivo durante l’inspirazione. Il ciclaggio avrà una buona sincronia entro ampi limiti di impostazione del trigger espiratorio. Direi che nella maggior parte dei casi il 25% può essere ragionevole (anche in omaggio alle buone intenzioni di chi ha sviluppato la pressione di supporto).

A tutti gli amici di ventilab, un sorriso e tanti cari auguri di buon Anno Nuovo!

 

Note:
*: tempo inspiratorio che può essere impostato direttamente definendone la durata in secondi o indirettamente con il settaggio del rapporto I:E o del flusso inspiratorio.
**: esiste sempre un tempo inspiratorio massimo consentito, che può essere fisso (in questo caso non compare tra i parametri di impostazione) o definibile dall’utente. Entro quel tempo inspiratorio massimo, la fine dell’inspirazione è innescata dal trigger espiratorio.

Read more ...

Svezzamento (weaning) dalla ventilazione meccanica: come fare il trial di respiro spontaneo.

26 nov 2017


La ventilazione meccanica invasiva è un’arma indispensabile per il trattamento dell’insufficienza respiratoria acuta.

Quando inizia a migliorare la malattia che ha determinato la necessità di intubazione e ventilazione meccanica, il problema diventa capire il momento giusto per procedere all’estubazione ed alla sospensione della ventilazione meccanica. Questo processo è lo svezzamento (weaning) dalla ventilazione meccanica.

Il weaning dalla ventilzione meccanica espone inevitabilmente a due possibili rischi: l’estubazione prematura, con il paziente che nelle ore successive dimostra di non essere in realtà ancora in grado di respirare in maniera autonoma, rendendo necessaria una nuova intubazione e la ripresa della ventilazione meccanica; l’estubazione ritardata, che porta ad un apparentemente prudenziale ma non necessario prolungamento della durata della ventilazione meccanica, con le annesse possibili complicanze.

La soluzione è semplice: cercare di sbagliare il meno frequentementente possibile la scelta del momento giusto dell’estubazione e della sospensione della ventilazione meccanica…

Per questo obiettivo, possiamo organizzare il ragionamento clinico in due fasi:

1) verificare se sussitono le condizioni per estubare il paziente (prevedere cioè se il paziente potrà rimanere senza tubo tracheale);

2) verificare se vi sono le condizioni per sospendere la ventilazione meccanica (cioè prevedere se il paziente, dopo l’eventuale estubazione, sarà capace di respirare da solo).

Estubare il paziente

Il tubo tracheale mantiene pervie le vie aeree, consendo di aspirare e rimuovere le secrezioni bronchiali. E’ un presidio fondamentale per quei pazienti con espettorazione poco efficace. Parlare di espettorazione, piuttosto che di tosse, sottolinea che il dato a cui prestare attenzione è la capacità di portare realmente all’esterno le secrezioni dell’apparato respiratorio. In molti pazienti intubati l’atto della tosse non raggiunge questa efficacia; in questi casi l’espettorazione andrebbe considerata assente.

La rimozione del tubo tracheale può essere quindi inopportuna nei soggetti, in particolare se ipersecretivi, con espettorazione inefficace. Se siamo in questa condizione, la valutazione del possibile svezzamento dalla ventilazione meccanica si può fermare qui, in attesa di tempi migliori.

Sospendere la ventilazione meccanica

Se il paziente non ha ragionevolmente più bisogno del tubo tracheale, bisogna chiedersi a questo punto se ha ancora bisogno della ventilazione meccanica.

Scartiamo a priori da questa valutazione, e da ogni velleità di estubazione, tutti i pazienti che versano in condizioni molto critiche (ad esempio con instabilità cardiocircolatoria o in coma) e quelli che hanno ancora una insufficienza respiratoria grave, caratterizzata da marcata ipossia o necessità di elevati valori di PEEP e FIO2, e/o acidosi respiratoria o necessità di elevato supporto inspiratorio. Spesso si definiscono queste situazioni con numeri precisi, come ad esempio PaO2/FIO2 ≤ 150 mmHg e PEEP ≥ 8 cmH2O. E’ certamente rassicurante avere numeri a cui fare riferimento, il problema è che questi numeri sono “inventati”. Questo non vuol dire che siano campati per  aria, ma solamente che devono essere sempre visti con flessibilità e con la capacità/responsabilità del medico di declinarli nelle diverse situazioni cliniche.

Per valutare se un paziente possa essere estubato in sicurezza, si esegue il test di respiro spontaneo (spontaneous breathing trial, cioè si sospende la ventilazione meccanica per un breve periodo mentre è ancora intubato.  Il test di respiro spontaneo consente di simulare il carico di lavoro respiratorio che ci sarà dopo l’estubazione e verificare se il soggetto sarà in grado di affrontarlo da solo, senza più supporto meccanico.

Se il paziente “resiste” a questa temporanea sospensione della ventilazione meccanica, dovremmo estubarlo perchè con buona probabilità riuscirà a fare definitivamente a meno di tubo tracheale e ventilatore meccanico. Mi rendo conto che il termine “resiste” non dice nulla di preciso, ma sono convinto che tutti capiscano bene cosa vuol dire: non insorge dispnea e non si attivano i muscoli accessori della respirazione, non si manifesta respiro rapido e superficiale o paradosso, non si genera ipossiemia grave o acidosi respiratoria, non si osservano aritmie gravi, ecc. ecc.

A questo punto è fondamentale intendersi su due aspetti tecnici fondamentali. Primo: cosa intendiamo con “sospendere la ventilazione meccanica”, Secondo: cosa intendiamo per “breve periodo”.

Nello spontaneous breathing trial la sospensione della ventilazione meccanica non coincide necessariamente con la rimozione fisica del ventilatore. Molti studi clinici hanno utilizzato come test di respiro spontaneo anche modalità di supporto inspiratorio considerate irrilevanti nell’aiuto alla ventilazione, riducendo cioè PEEP e pressione di supporto a valori (teoricamente) subclinici o limitati al compenso del carico imposto dal tubo tracheale.



Figura 1

Tutte queste modalità sono state considerate valide per il test di respiro spontaneo : 1) tubo a T (figura 1): si rimuove materialmente il ventilatore meccanico e si connette il tubo tracheale, con un raccordo a T, ad un flusso continuo di gas umidificato ed arricchito di ossigeno; 2) PS 0-PEEP 0: mantenendo il paziente collegato al ventilatore, si azzerano pressione di supporto (PS) e PEEP (con trigger a flusso molto sensibile); 3) CPAP ≤ 5 cmH2O; 4) pressione di supporto 5-8 cmH2O; 5) ATC (automatic tube compensation) senza supporto inspiratorio: il ventilatore applica solo la pressione che calcola necessaria per annullare il carico resistivo del tubo tracheale.

Queste scelte non sono equivalenti. Quale scegliere? Le più recenti linee guida sullo svezzamento dalla ventilazione meccanica mettono a confronto tubo a T e pressione di supporto 5-8 cmH2O, raccomandando l’uso di quest’ultima strategia per aumentare il numero di pazienti estubati con successo (1). Questa conclusione è confermata anche da una successiva meta-analisi (2).

Penso però che questa raccomandazione meriti un approfondimento.

Facciamo il test di respiro spontaneo per indagare se il paziente è in grado di sopportare il lavoro respiratorio una volta sospesa la ventilazione artificale. Pertanto dovrebbe essere preferibile la modalità di spontaneous breathing trial che offre un carico di lavoro respiratorio simile a quello ci sarà realmente dopo l’estubazione. Sappiamo che tubo a TPS 0-PEEP 0 effettivamente offrono lo stesso lavoro respiratorio che dovrà essere affrontato dopo l’estubazione, mentre CPAP e PS 5-7 cmH2O lo riducono rispettivamente di circa il 30% e 50%  (3). Da questo punto di vista, si dovrebbe preferire come test di respiro spontaneo il tubo a T o PS 0-PEEP 0.

Come conciliare l’osservazione che il tubo a T, rispetto alla pressione di supporto, pur sottoponendo il paziente ad uno sforzo più simile a quello che realmente sosterrà una volta estubato, in pratica è un po’ meno accurato nel prevedere l’esito dell’estubazione?

In medicina solitamente la spiegazione si trova nei dettagli importanti (e spesso ignorati dalla sedicente Evidence-based Medicine).

La durata dei trial di respiro spontaneo, negli studi che hanno confrontato il numero dei pazienti estubati con successo, è quasi sempre di 120 minuti (trascorsi in PSV o in tubo a T) (1-2). Gli studi che invece hanno confrontato il lavoro respiratorio durante lo spontanoues breathing trial e dopo l’estubazione, hanno mantenuto il test di respiro spontaneo per periodi molto più brevi di PSV o tubo a T: nella metà degli studi la loro durata era inferiore o uguale a 15 minuti (3).

Ma quanto deve essere lungo un trial di respiro spontaneo? A mio parere non certo 120 minuti. Sappiamo infatti che le variazioni di pattern e lavoro respiratorio durante il test di respiro spontaneo si verificano entro i primi 15 minuti (4-5) e che prolungare lo spontaneous breathing trial (con tubo a T) oltre i 30 minuti non ne aumenta la capacità di previsione dell’esito dell’estubazione (6).

Possiamo ipotizzare che chi è sottoposto ad un trial di respiro spontaneo eccessivamente lungo (120 minuti) senza alcun aiuto (tubo a T) si stanca inutilmente di più rispetto a chi viene aiutato (pressione di supporto). Questa ipotesi è in sintonia con i risultati di un recente studio, in cui quasi tutti i pazienti facevano uno spontaneous breathing trial con tubo a T, la maggior parte dei quali per una durata di 60-120 minuti. Al termine dei test di respiro spontaneo superati, una parte dei pazienti veniva estubata, in altri invece si rimandava l’estubazione di un’ora, durante la quale i muscoli respiratori venivano messi a riposo con la ripresa termporanea della ventilazione meccanica. Il gruppo di pazienti estubati dopo il riposo subiva meno reintubazioni nelle 48 ore successive rispetto a quelli estubati subito (7).

L’argomento è complesso ed articolato ed abbiamo solo accennato ad argomenti che meriterebbero più spazio. Siamo comunque nelle condizioni di concludere proponendo un ragionevole (e sempre flessibile) approccio allo svezzamento dalla ventilazione meccanica:

  • valutare preliminarmente la presenza di espettorazione efficace. Se assente, mantenere l’intubazione tracheale e la ventilazione meccanica; se l’espettorazione è efficace, eseguire il test di respiro spontaneo con approcci diversi in funzione della tecnica utilizzata:
    • PS 5-7 cmH2O: se dopo 30-60 minuti il test non è fallito e si percepisce un basso rischio di fallimento, si può procedere all’estubazione. Nei casi dubbi si può ragionevolmente prolungare l’osservazione fino ai 120 minuti;
    • tubo a T (o PS 0-PEEP o): mi sembra ragionevole non superare i 30 minuti di test;
  • nei pazienti che superano il test di respiro spontaneo con qualche segno di fatica (specialmente se il trial è stato condotto con tuto a T), può essere utile riprendere la ventilazione per un’ora e quindi procedere all’estubazione.

Come sempre, un sorriso a tutti gli amici di ventilab.

Bibliografia
1) Ouellette DR et al. Liberation from mechanical ventilation in critically ill adults: an official American College of Chest Physicians/American Thoracic Society clinical practice guideline. Chest 2017; 151:166-80
2) Burns KEA et al. Trials directly comparing alternative spontaneous breathing trial techniques: a systematic review and meta-analysis. Crit Care  2017; 21:127
3) Sklar MC et al. Effort to breathe with various spontaneous breathing trial techniques. A physiologic meta-analysis. Am J Respir Crit Care Med  2017; 195:1477-85
4) Jubran A et al. Weaning prediction. Esophageal pressure monitoring complements readiness testing. Am J Respir Crit Care Med 2005; 171: 1252-9
5) Figueroa-Casas JB et al. Changes in breathing variables during a 30-minute spontaneous breathing trial. Respir Care 2015;60:155-61
6) Estenban A et al. Effect of spontaneous breathing trial duration on outcome of attempts to discontinue mechanical ventilation. Am J Respir Crit Care Med 1999; 159:512-8
7) Fernandez MM et al. Reconnection to mechanical ventilation for 1 h after a successful spontaneous breathing trial reduces reintubation in critically ill patients: a multicenter randomized controlled trial. Intensive Care Med 2017; 43:1660-7

Riproduciamo qui i commenti CON IMMAGINI originariamente pubblicati su ventilab.org (per i nuovi commenti, vedi la sezione al termine del post):

 


 

Read more ...

Reclutamento e PEEP nella ARDS: commento ad un trial clinico.

1 ott 2017


Quattro giorni fa è stato pubblicato online su JAMA il trial clinico “Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients With Acute Respiratory Distress Syndrome. A Randomized Clinical Trial” (1). I risultati dello studio sono “forti” ed è diventato subito molto popolare (in questi pochi giorni ha già ricevuto quasi 45.000 visualizzazioni). Per questo merita di essere commentato per evitare di limitarsi a ripetere le conclusioni dell’abstract senza avere capito bene di cosa si parla (ahimè vizio frequente, se non la normalità, nella sedicente Evidence Based Medicine).

Partiamo proprio dalle conclusioni dell’abstract: “In patients with moderate to severe ARDS, a strategy with lung recruitment and titrated PEEP compared with low PEEP increased 28-day all-cause mortality.” Questi i numeri: sono morti il 55% dei pazienti con reclutamento+PEEP individualizzata dopo PEEP trial rispetto al 49% dei pazienti con bassa PEEP. Sembra proprio che  reclutamento e scelta della PEEP sulla miglior compliance facciano molto male rispetto alla PEEP scelta con le tabelle PEEP/FIO2. Rimando per eventuali approfondimenti sulle strategie di scelta della PEEP al post del 28/02/2015.

Di fronte a nuove conoscenze, è assolutamento onesto saper cambiare le proprie convinzioni. Su ventilab abbiamo sempre supportato, nella ARDS, la scelta della PEEP che si associa alla minor driving pressure (cioè alla massima compliance): dobbiamo ora suggerire un cambio di strategia? Penso proprio di no, cerchiamo di capire insieme il perchè.

Una premessa prima di entrare nel merito: lo studio ha arruolato 1013 pazienti nel corso di quasi 6 anni in 120 Terapie Intensive. Facendo due semplici conti, mediamente ciascuna  Terapia Intensiva ha arruolato poco meno di 1.5 pazienti/anno, quindi un paziente ogni 8 mesi. Questo vuol dire che la strategia “reclutamento+PEEP trial, applicata nel 50 % dei pazienti, è stata messa in pratica mediamente una volta ogni 16 mesi in ciascuna Terapia Intensiva. Stiamo parlando quindi di un intervento molto raro, sul quale probabilmente le maggior parte delle Terapie Intensive partecipanti non ha molta esperienza. E forse molti pazienti potrebbero essere “sfuggiti” allo screening; se così fosse la rappresentatività del campione potrebbe essere fortemente in discussione.

Vediamo ora quali trattamenti sono stati messi a confronto. Il gruppo di controllo (definito arbitrariamente nello studio come “bassa PEEP“) era ventilato con basso volume corrente (circa 6 ml/kg) e PEEP ricavata dalla tabella PEEP/FIO2 (figura 1): si sceglieva cioè la combinazione tra PEEP e FIO2 presente nella tabella per arrivare ad una SpO2 tra 90 e 95%.

Figura 1

Il gruppo di studio (“reclutamento+PEEP trial“) era ventilato con lo stesso basso volume corrente del gruppo di controllo, ma da esso si differenziava per 2 motivi: 1) riceveva una iniziale manovra di reclutamento alveolare e 2) sceglieva la PEEP dopo un PEEP trial. Dobbiamo perciò tenere presente che l’intervento nel gruppo “reclutamento+PEEP trial era la combinazione di 2 interventi concettualmente indipendenti l’uno dall’altro (in molti studi sono infatti analizzati separatamente). Ne consegue che non possiamo sapere se i risultati ottenuti siano da attribuire a uno dei due o ad entrambi gli interventi.

Esaminiamo ora nel dettaglio come sono stati eseguiti i due interventi nel gruppo di studio, cioè reclutamento e PEEP trial.

Reclutamento.

Ritengo che, già prima dello studio che stiamo commentando, non vi fossero buone ragioni per eseguire il reclutamento al di fuori di casi selezionati (vedi ad esempio il post del 13/4/2014). Lo studio di JAMA sembra confermare piuttosto chiaramente questo punto di vista: il reclutamento non dovrebbe essere fatto di routine nei pazienti con ARDS moderata-grave.

Merita un approfondimento la tecnica di reclutamento utilizzata nello studio. Nei primi 555 pazienti arruolati, il reclutamento è stato eseguito con una pressione controllata di 15 cmH2O più PEEP di 25 cmH2O per 1 minuto, PEEP di 35 cmH2O per un’altro minuto ed infine PEEP 45 cmH2O per 2 minuti. Quindi nei due minuti finali la pressione di plateau era circa 60 cmH2O. Mica poco, vero? Infatti, dopo aver avuto 3 arresti cardiaci durante le manovre di reclutamento alveolare, si è deciso di modificare questo schema di reclutamento. Dopo poco più di metà dei pazienti arruolati, è stato cambiato il protocollo del reclutamento alveolare (fortunatamente per i pazienti, sfortunatamente per la qualità dello studio): le PEEP del reclutamento sono diventate di 25, 30 e 35 cmH2O, ciascuna mantenuta per 1 minuto.

I risultati dello studio sembrano fortemente condizionati proprio dall’esecuzione di queste manovre di reclutamento. I pazienti che hanno fatto il reclutamento hanno avuto un maggior numero di drenaggi pleurici per pneumotorace ed una maggior frequenza di barotrauma rispetto al gruppo di controllo (il cosiddetto “bassa PEEP“). Inoltre, l’unica causa di morte risultata differente tra i due trattamenti è quella con barotrauma, come si può osservare nella tabella semplificata dei risultati della figura 2.


Figura 2

Poichè è ben noto che la manovra di reclutamento alveolare può indurre grave ipotensione (fino all’arresto cardiaco), i pazienti che sono stati sottoposti a questo trattamento hanno ricevuto un carico di fluidi aggiuntivi fino ad arrivare ad una pressione venosa centrale superiore a 10 mmHg (!?) (o a pulse pressure variation < 13%). Ben sappiamo che ricevere liquidi in eccesso si associa ad un aumento della mortalità, in particolare nei pazienti con ARDS (2-3).

Mi sembra si possa dire che il reclutamento, già da solo, sembra aver inciso molto sul risultato negativo del trial clinico.

PEEP trial.

La scelta della PEEP è stata eseguita con un PEEP trial, cioè ricercando la PEEP che si associa alla maggior compliance (quindi alla minor driving pressure se il volume corrente è costante). Questo un approccio è stato più volte proposto e commentato su ventilab (ad esempio vedi il post del 06/10/2013 e quello del 28/02/2015). Nello studio di JAMA questo PEEP trial è però stato condotto in modo molto discutibile, comunque molto diverso da quello sempre descritto su ventilab. Innanzitutto si sono testate solo PEEP di 23, 20 17, 14 ed 11 cmH2O. La PEEP alla fine utilizzata per la ventilazione meccanica corrispondeva a quella che nel PEEP trial aveva ottenuto la maggior compliace, aumentata però di 2 cmH2O (perchè questo aumento? se a qualcuno interessa, ne possiamo discutere nei commenti). I pazienti potevano quindi ricevere una PEEP mai inferiore a 13 cmH2O. Questa scelta può essere in accordo con la strategia del Open Lung Approach, ma non con quello della scelta della PEEP che minimizza la driving pressure, poichè quest’ultima spesso porta a scegliere PEEP inferiori a 10 cmH2O. Lo vedo nella mia pratica clinica ed è confermato in uno studio che ha scelto la PEEP dopo PEEP trial iniziato da 5 cmH2O (la metà dei pazienti riceveva infatti una PEEP minore o uguale a 11 cmH2O) (4). Se vuoi riflettere su questo aspetto, prova a pensare se metteresti una PEEP di almeno 13 cmH2O nella paziente presentata nel già citato post del 28/02/2015


Figura 3

L’utilizzo di PEEP elevate sembra particolarmente temibile nei pazienti con ARDS focale, più di un terzo dei pazienti con ARDS (5): esso infatti produce una iperinflazione delle zone sane del polmone con solo un minimo reclutamento in quelle basali con gli infiltrati alveolari (6). In un bellissimo studio italiano già 10 anni fa si faceva notare che in questo tipo di ARDS era opportuno ridurre la PEEP ben al di sotto dei valori proposti nella tabella utilizzata anche nello studio di JAMA per il gruppo di controllo (il cosiddetto bassa PEEP), una riduzione in media da 13 a 7 cmH2O (7). Questa riduzione di PEEP, rispetto a quella proposta nella tabella PEEP/FIO2, era necessaria per mantenere lo stress index tra 0.9 e 1.1. Con questa strategia di riduzione della PEEP si deteterminava anche la diminuzione della concentrazione plasmatica di mediatori infammatori (IL-6,IL-6 e sTNFα). In figura 3 vediamo l’esempio di come si modificava, in un paziente rappresentativo, lo stress index (da 1.2 a 1) riducendo la PEEP dai 12 cmH2O suggeriti dalla tabella PEEP/FIO2 (a sinistra) ai 5 cmH2O richiesti per avere lo stress index di 1 (a destra). Per qualche informazione in più sullo stress index, puoi leggere anche i post del 15/08/2011 e del 28/08/2011.

A questo punto possiamo comprendere perchè che il PEEP trial proposto nello studio di JAMA non è un vero PEEP trial, ma un modo per scegliere la PEEP meno peggiore tra 13 e 25 cmH2O. Questo senza valutare la presenza di eventuali segni di sovradistensione, molto probabili visto che il 17.4% dei pazienti del “gruppo reclutamento hanno avuto pressioni di plateau > 30 cmH2O (rispetto al 10.7% del gruppo di controllo). Questo anche se nel protocollo era specificato che la pressione di plateau doveva rimanere sotto i 30 cmH2O.

L’iperinflazione nel gruppo “reclutamento+PEEP trial può essere stata ulteriormente aggravata dall’aver trascurato la PEEP intriseca che si aggiunge alla PEEP impostata. Il PEEP trial era eseguito mentre il paziente aveva una frequenza respiratoria di 20/min. Una volta scelta la PEEP da applicare, la frequenza respiratoria veniva aumentata mediamente a 30/min. In questo modo nei pazienti con ARDS si può sviluppare una autoPEEP che si somma sia alla PEEP che alla pressione di plateau. La dimensione dell’autoPEEP durante ventilazione a basso corrente nei pazienti con ARDS è tutt’altro che trascurabile, essendo mediamente 6 cmH2O (8) . Come ben sanno i lettori di ventilab, la best PEEP dovrebbe invece tenere conto anche dell’autoPEEP per limitare la sovradistensione.

Da ricordare infine che elevati valori di PEEP possono aggravare lo scompenso cardiaco destro che insorge acutamente in una quota non trascurabile di pazienti con ARDS (9) e potrebbero quindi aver influito sull’outcome.

Conclusioni.

L’analisi del trial clinico appena apparso su JAMA rende evidente come non vi sia nessun nesso tra i suoi risultati e la scelta della PEEP per minimizzare la driving pressure: si sta parlando di cose completamente diverse. La lettura meditata dello studio ci può comunque insegnare molto:

  1. nella ARDS la sovradistensione sembra essere più temibile dell’atelectrauma: reclutamento e PEEP “alta” non sono quindi un valore da ricercare, ma una carta da giocare solo a ragion veduta in casi selezionati e sotto monitoraggio emodinamico;
    • riservare il reclutamento alveolare alle condizioni di marcata ipossiemia associata a compliance particolarmente bassa, ricordando che probabilmente è più efficace nelle ARDS diffuse (10);
    • PEEP “alta” solo se riduce la driving pressure più di qualsiasi altra PEEP (valutando anche quelle tra i 5 ed i 10 cmH2O); ricordiamo che la PEEP “giusta” nella ARDS spesso può essere una PEEP “bassa”. In definitiva non ha proprio senso porre la scelta tra PEEP “alta” o “bassa”, quando pazienti diversi si giovano di PEEP diverse, talora “alte”, talaltra “basse”;
  2. per limitare la sovradistensione con un approccio individualizzato possiamo:
    • contenere la driving pressure (volume corrente + PEEP ragionati) (meglio ancora la driving pressure transpolmonare);
    • considerare come best PEEP la PEEP totale (quella letta con l’occlusione di fine espirazione) e non quella PEEP impostata sul ventilatore;
    • valutare sempre lo stress index (abituiamoci a vederlo anche “ad occhio”, come in figura 3);
    • in caso di pressione di plateau elevata misurare la pressione transpolmonare di fine inspirazione (possiamo essere abbastanza tranquilli se è al di sotto dei 15-20 cmH2O).

Ed arrivati alla fine, come sempre un sorriso a tutti gli amici di ventilab.

Bibliografia

  1. Writing Group for ART Investigators. Effect of lung recruitment and titrated Positive End-Expiratory Pressure (PEEP) vs low PEEP on mortality in patients with Acute Respiratory Distress Syndrome. A Randomized Clinical Trial. JAMA. Published online September 27, 2017. doi:10.1001/jama.2017.14171
  2. Sakr Y et al. High tidal volume and positive fluid balance are associated with worse outcome in acute lung injury. Chest 2005; 128 :3098-108
  3. Wiedemann HP et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 2006; 354:2564-75
  4. Pintado MD et al. Individualized PEEP setting in subjects with ARDS: a randomized controlled pilot study. Respir Care 2013; 58:1416-23
  5. Puybasset Let al. Regional distribution of gas and tissue in acute respiratory distress syndrome. I. Consequences for lung morphology. CT Scan ARDS Study Group. Intensive Care Med 2000;26:857-69
  6. Nieszkowska A et al. Incidence and regional distribution of lung overinflation during mechanical ventilation with positive end-expiratory pressure. Crit Care Med 2004;
    32:1496-503
  7. Grasso S et al. ARDSnet ventilatory protocol and alveolar hyperinflation. Role of Positive End-Expiratory Pressure. Am J Respir Crit Care Med 2007; 176:761-7
  8. de Durante G et al. ARDSNet lower tidal volume ventilatory strategy may generate intrinsic Positive End-Expiratory Pressure in patients with Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2002; 165:1271-4
  9. Vieillard-Baron A et al. Acute cor pulmonale in acute respiratory distress syndrome submitted to protective ventilation: incidence, clinical implications, and prognosis. Crit Care Med 2001; 29:1551-5
  10.  Constantin JMet al. Lung morphology predicts response to recruitment maneuver in patients with acute respiratory distress syndrome. Crit Care Med 2010; 38:1108-17

PS: ci sarebbero altri aspetti di cui discutere, come ad esempio la scelta di una ventilazione a flusso inspiratorio costante in assistita-controllata, la mancata definizone della durata dell’occlusione di fine inspirazione per calcolare la compliance durante il PEEP trial, l’assenza di qualsiasi dato emodinamico, l’incompatibilità dei risultati con un reale utilizzo della tabella PEEP/FIO2 nel gruppo di controllo. Ma penso che sia sufficiente quanto abbiamo detto finora. Per approfondimenti, si possono fare richieste nei commenti.

Read more ...

Sforzo inefficace

24 set 2017


Ricapitoliamo brevemente l’approccio sistematico all’analisi del monitoraggio grafico proposto più dettagliatamente nel post del 20/08/2017, che abbiamo definito come metodo RESPIRE: R: riconosci le curve importanti (pressione e flusso); E: espirazione del ventilatore (identifica le fasi tra l’inizio del flusso negativo e l’inizio del successivo flusso positivo); S: supponi che il paziente sia passivo (immagina le curve come potrebbero essere molto approssimativamente durante una ventilazione controllata); P: punto di vista del paziente, tra la curva di pressione e quella di flusso; I: inspirazione del paziente (le curve gli si avvicinano rispetto a come hai supposto fossero in condizioni di passività); R: rilasciamento ed equilibrio (fasi di pressione costante a flusso zero in cui si va verso un equilibrio tra pressione delle vie aeree ed alveolare); E: espirazione del paziente (le curve gli si allontanano rispetto a come hai supposto fossero in condizioni di passività).

Ora utilizziamo questo metodo per capire cosa sono quelle oscillazioni di flusso e pressione all’inizio dell’espirazione che avevamo visto nel post precedente e di cui abbiamo rimandato la spiegazione ad oggi (figura 1).


Figura 1

Siamo abituati a considerare la variazioni di flusso durante l’espirazione come un tentativo, non riuscito, di inspirazione del paziente durante la fase espiratoria. Lo definiamo sforzo inefficace. Ciò che vediamo nei cerchi bianchi della figura 1 potrebbe essere quindi una asicronia paziente-ventilatore riconducibile a qualcosa di simile allo sforzo inefficace.

Iniziamo il ragionamento analizzando con il RESPIRE un caso di sforzo inefficaceclassico“.


Dopo aver riconosciuto le tracce di pressione e flusso (R), individuiamo le fasi espiratorie (E), che nella figura 2 abbiamo identificato con le sigle E(1), E(2), E(3) ed E(4). Occupiamoci esclusivamente della terza espirazione della figura, cioè di E(3), che vediamo riprodotta in dettaglio nella figura 3.

Figura 3

Supponiamo (S) come potrebbe essere il flusso espiratorio passivo, che immaginiamo esponenzialmente decrescente (linea tratteggiata rossa).

Pensiamo al punto di vista del paziente (P), che, semplificando rispetto al post del 20/08/2017, abbiamo rappresentato come un individuo che respira posizionato tra le due curve (pressione sopra e flusso sotto). Le alterazioni delle curve rispetto a quanto abbiamo supposto, sono spiegabili dall’attività respiratoria del paziente sovrapposta a quella del ventilatore meccanico? Ricordiamo che l’attività inspiratoria spontanea del paziente aumenta il flusso e tende a ridurre la pressione (se il ventilatore non compensa perfettamente) o la lascia costante (se il ventilatore è efficientissimo).

E’ presente inspirazione del paziente (I)? Abbiamo cioè aumenti del flusso (movimenti verso il punto di vista del paziente P) rispetto a quanto abbiamo supposto (S)? Nel punto 1 della figura 3 vediamo in effetti che la curva di flusso si avvicina al paziente rispetto a quella ipotetica, come se il paziente “la inspirasse”. Questo è compatibile con un’attività inspiratoria del paziente (pur essendo il ventilatore in fase espiratoria). Vediamo ora che succede alla traccia di pressione: ha un andamento compatibile con l’inspirazione del paziente? La pressione resta sostanzialmente costante (forse si riduce lievemente) nel punto della presunta inspirazione del paziente rilevata sulla traccia di flusso.  Anche questo è compatibile con l’eventuale attività inspiratoria del paziente: il compito del ventilatore durante l’espirazione è infatti quello di mantenere costante la PEEP impostata. Se il ventilatore non riuscisse ad adempiere perfettamente il proprio compito, potrebbe esserci in questa fase un piccolo calo di pressione dovuto al fatto che il paziente sottrae dal circuito respiratorio più aria di quanta il ventilatore riesca a metterne. Un aumento di pressione in questo momento sarebbe l’unico reperto inconciliabile con un tentativo di inspirazione del paziente nella fase di espirazione del ventilatore: se il paziente tenta di inspirare (sottraende aria al circuito), la pressione nel circuito del ventilatore non può certo salire. Concludiamo quindi che quanto stiamo osservando è attribuibile all’attività inspiratoria del paziente.

Esistono punti di rilassamento dei muscoli respiratori e conseguente equilibrio delle pressioni tra paziente e ventilatore (R)? Nel punto 3 possiamo certamente affermare di sì: il flusso è 0 e la pressione è quella impostata come PEEP. In assenza di flusso a pressione costante, la pressione nel ventilatore è uguale a quella polmonare. Se siamo a fine espirazione concludiamo che non esiste autoPEEP.

Figura 4


Esiste espirazione attiva del paziente (E)? Sembra di no: concluso l’effetto del tentativo inefficace di inspirazione visto al punto 1, dal punto 2 riprende un flusso espiratorio esponenzialmente decrescente, come evidenziato dalla nuova riga di flusso rossa tratteggiata in figura 4.

 

Potrebbe rimanere da interpretare quel piccolo aumento di pressione che vediamo immediatamente prima del punto 2, ma volutamente lo tralascio perchè sarebbe una spiegazione forse lunga e complessa per un evento clinicamente insignificante.

Applicando il metodo RESPIRE abbiamo così accertato che quello che abbiamo visto è un tentativo di inspirazione durante l’espirazione, cioè uno sforzo inefficace. Certamente per asincronie così evidenti come questo sforzo inefficace, i lettori di ventilab non avevano certo bisogno di un approccio così metodico. Vediamo però se questo può essere utile quando le cose sono meno chiare ed analizziamo ciò che è stato evidenziato nella figura 1, di cui riproduciamo un dettaglio in figura 5.

Figura 5

Come sempre riconosciamo (R) pressione e flusso ed identifichiamo le espirazioni (E), in questo caso indicate con E(1) ed E(2). Analizziamo E(2) e supponiamo (S) come potrebbe essere l’espirazione passiva, identificata con la linea rossa tratteggiata. Quindi poniamo il punto di vista del paziente (P) tra le due curve. Un’analisi di questa espirazione è stata fatta nel post del 20/08/2017, oggi ci occupiamo esclusivamente della sua parte iniziale. Quello che vediamo possono essere sforzi inefficaci?

Concentriamo la nostra attenzione sul momento identificato dalla linea azzurra tratteggiata. Ci sono segni compatibili con l’inspirazione del paziente (I)? Il flusso di avvicina verso il paziente, evento compatibile con una sua attività inspiratoria. Ma nello stesso istante la pressione nelle vie aeree si allontana dal paziente, cioè aumenta. L’incoerenza tra la variazione di flusso e di pressione esclude che ciò che vediamo sia dovuto ad attività inspiratoria del paziente.

Nella figura non vediamo momenti di riposo e rilasciamento (R). Cerchiamo quindi eventuale attività espiratoria del paziente (E), quindi flusso che si allontana dal suo punto di vista o che tende ad aumentare rispetto a quello immediamente precedente. Una simile variazione di flusso si verifica subito dopo il punto appena analizzato in figura 5, e lo vediamo rappresentato in figura 6.

Figura 6

Se riflettiamo sul momento identificato dalla linea tratteggiata azzurra, vediamo che il flusso si allontana dal paziente rispetto al flusso precedente (il precedente flusso diventa sempre il nuovo punto di partenza di una espirazione passiva con andamente decrescentemente esponenziale). Questo potrebbe essere quindi segno di una espirazione attiva. Ma se vediamo cosa succede alla pressione delle vie aeree, questa spiegazione diventa inaccetabile: in quello stesso momento la pressione delle vie aeree infatti si riduce, evento incompatibile con l’espirazione attiva del paziente.

Escludiamo quindi che queste variazioni di flusso e pressioni siano associate ad attività del paziente. Ne consegue che devono essere associate a variazioni dell’attività del ventilatore. Infatti tutto trova una semplice spiegazione se si adotta questo punto di vista: la riduzione del flusso espiratorio in figura 5 è dovuta all’aumento della pressione delle vie aeree. Quindi il ventilatore aumenta la pressione delle vie aeree, questo riduce la differenza di pressione tra polmoni e ventilatore e quindi il flusso espiratorio. Chiaramente il contrario di quanto avviene in figura 6: il ventilatore riduce la pressione e questo porta ad un aumento del flusso espiratorio. Se ci fossero dubbi o curiosità su questo aspetto, li affronterò in risposta a qualche commento (ad esempio, perchè il ventilatore si mette a fare tutta questa “confusione”?).

Il metodo RESPIRE è un neonato in fase di sviluppo. Mi farà certamente piacere ricevere critiche e suggerimenti per migliorarlo (come si può notare, si può trovare già qualche piccola evoluzione in  questo post rispetto al precedente). Tra qualche mese magari potremo raggiungere una proposta più matura (comunque mai definitiva, dal momento che la conoscenza, anche scientifica, non può mai essere definitiva). Che sarà condivisa come sempre liberamente e gratuitamente con tutti coloro che riterranno possa essere utile.

Al momento comunque il RESPIRE si sta dimostrando efficace per affrontare anche asincronie ed artefatti complessi.

Il messaggio principale di oggi mi sembra posso essere riassunto in questi punti:

  • quando si vede una curva ventilatoria “strana“, bisogna resistere alla tentazione di dare al volo diagnosi e soluzione;
  • per capire cosa accade è necessario analizzare sistematicamente la curva di flusso ed in maniera sincrona quella di pressione;
  • se le variazioni, rispetto alla ipotetica passività, delle tracce di flusso e pressione sono coerenti con la presenza di attività respiratoria del paziente, possiamo attribuirle ad esso;
  • qualora non sia soddisfatta la condizione del punto precedente, nascono da anomalie o caratteristiche del sistema ventilatore-circuito ventilatorio (più frequenti di quanto si possa pensare).

Come sempre, un sorriso a tutti gli amici di ventilab.



Read more ...

Monitoraggio grafico della ventilazione meccanica: un approccio sistematico per l'interpretazione.

20 ago 2017


Quando si prova ad interpretare le curve di pressione e flusso delle vie aeree, spesso vedo commettere un errore fondamentale: voler dare subito la diagnosi, cioè trovare la risposta giusta a colpo d’occhio, arrivandoci e non dopo una analisi ragionata. Si prova ad indovinare piuttosto che a ragionare. Certo, le asincronie più clamorose si vedono al volo, ma, se si vuole diventare davvero bravi, il metodo di gran lunga migliore è quello di applicare un approccio sistematico di lettura e giungere alle conclusioni solo al termine dell’analisi, dopo aver capito esattamente ogni singola dinamica. Un possibile approccio sistematico alla interpretazione delle tracce di pressione e flusso delle vie aeree (ABC-DEF) è stato proposto già 7 anni fa nei post del 13/08/2010, del 20/08/2010 e del 29/08/2010. Nonostante il vecchio ABC-DEF di ventilab sia semplice e sempre valido, oggi vorrei proporre un metodo completamente nuovo, fondato sulla comprensione profonda dell’interazione paziente-ventilatore. Il metodo prevede 7 fasi e lo chiameremo RESPIRE, dall’iniziale di ciascuna fase.

Oggi vedremo in sintesi il metodo RESPIRE nella sua applicazione pratica valida per tutte le ventilazioni pressometriche, cioè tutte le modalità di ventilazione meccanica ad eccezione di volume controllato, NAVA e PAV. Durante il corso “Le modalità di Ventilazione Meccanica” avremo certamente modo di dettagliare meglio il razionale del RESPIRE ed estenderne l’applicazione a tutte le modalità di ventilazione meccanica.

Applichiamo il RESPIRE ad una paziente (con peso corporeo ideale di 52 kg) ventilata con pressione di supporto 8 cmH2O e PEEP 5 cmH2O. Nella figura 1 è riprodotta la schermata completa dello schermo del ventilatore meccanico.


Figura 1

Guardando i numeri, notiamo che la frequenza respiratoria è inferiore a 30/min, il volume corrente è 8 ml/kg, il rapporto frequenza respiratoria/volume corrente è 68. Non male. Vediamo ora cosa ci aggiunge il monitoraggio ventilatorio.

Il RESPIRE può essere applicato al letto del paziente congelando/salvando lo schermo del monitor ed utilizzando i cursori che i ventilatori meccanici offrono per l’analisi delle curve salvate/congelate.

R: Riconosci e disponi le curve importanti

Il primo passo è utilizzare solo le curve di pressione e flusso, con la curva di pressione nel campo superiore e quella di flusso in quello inferiore. E’ un ordine gerarchico, perchè nelle ventilazioni pressometriche è la curva di pressione che “comanda” quella di flusso. Inoltre questo ordine sarà comodo nel prosieguo del metodo. Se il ventilatore non ci offre di default questa visione, possiamo facilmente impostarla scegliendo l’ordine delle curve da visualizzare.


Figura 2

In questo modo abbiamo eliminato molti dati inutili per l’analisi e possiamo concentrarci solo su ciò che è veramente indispensabile.

E: Espirazione del ventilatore

Ora individuiamo i punti in cui inizia e finisce la fase espiratoria sulla traccia di flusso. Sono i punti in cui la traccia di flusso incrocia la linea orizzontale per scendere sotto lo zero o per risalire sopra lo zero. Questi punti consentono di frazionare il ciclo respiratorio, definendo fase espiratoria (“exp” nelle figure) la parte che comprende il flusso negativo e fase inspiratoria (“insp” nelle figure) tutto il resto.

Figura 3

S: Supponi che il paziente sia passivo

Nelle ventilazioni pressometriche supponiamo che, in assenza di attività del paziente, sia presente una curva di pressione “quadra” in inspirazione sopra il livello di PEEP ed una curva di flusso decrescente, sia in inspirazione che in espirazione. Vediamo cosa significa.

Figura 4

Nella figura 4 vediamo come dovrebbe essere una curva di pressione passiva. Durante la fase espiratoria ci aspettiamo il livello di PEEP (in BIPAP la Pbassa durante il tempo di Pbassa), durante la fase inspiratoria un aumento di pressione pari al livello di pressione inspiratoria sopra PEEP (in BIPAP la Palta nel tempo di Palta). La velocità del passaggio dalla PEEP alla pressione inspiratoria (l’angolo α in figura) è regolato con il tempo di salita (rise time). In caso di rise time 0, l’angolo α è di 90°.

La variazione di pressione nel ventilatore determina il flusso. Quando aumenta la pressione nel ventilatore (dalla PEEP alla pressione inspiratoria), il flusso inspiratorio inizia con un picco che poi descresce verso lo zero. Quando si riduce la pressione nel ventilatore (dalla pressione inspiratoria alla PEEP), più o meno specularmente all’inspirazione, un flusso espiratorio inizia con un picco e quindi descresce verso lo zero. Il decadimento passivo del flusso è teoricamente esponenziale (con una convessità, come se fosse attratto, verso la linea dello zero) e la velocità del decadimento è determinata dalla costante di tempo dell’apparato respiratorio (vedi post del 17 luglio 2016) (figura 5).

Figura 5

Applichiamo ora questi concetti alle nostre curve. Ovviamente ci vuole un minimo di fantasia e, sullo schermo dei nostri ventilatori, non possiamo fare che altro che immaginarci le curve passive, senza poterle disegnare concretamente. Ma se ci si prova, si vedrà che in fondo è molto facile.

Figura 6

Nella figura 6 abbiamo disegnato in bianco le ipotetiche curve passive. Abbiamo posizionato la linea della PEEP un po’ più in basso della pressione espiratoria. Questo perchè la PEEP impostata è 5 cmH2O (figura 1, valore di PEEP in nero, in basso), mentre la pressione a fine espirazione misurata è 6 cmH2O (figura 1, valore di PEEP in giallo, in alto a sinistra). Sappiamo quindi che in espirazione la pressione è un po’ più alta di quella impostata.

Guardando la figura 1, sappiamo anche che la pressione di picco (14 cmH2O) è più alta della pressione che abbiamo programmato di raggiungere in inspirazione (13 cmH2O, somma di PEEP 5 + PS 8). Per questo motivo abbiamo considerato una pressione inspiratoria passiva a 13 cmH2O, un po’ più bassa del picco.

Non possiamo sapere l’entità dei picchi di flusso se il paziente fosse passivo, quale la sua costante di tempo. Ci accontentiamo quindi di immaginare flussi decrescenti (verso la linea dello zero) che partono dal picco e finiscono alla fine della inspirazione (volendo essere più fini al punto del trigger espiratorio, correzione tanto più opportuna quanto più il trigger espiratorio è alto) o alla fine della espirazione. E’ una approssimazione comunque assolutamente efficace nell’interpretare le curve.

P: Punto di vista del paziente

Per capire bene come l’attività respiratoria del paziente possa modificare le curve di pressione e flusso, può essere utile fare un altro piccolo sforzo di fantasia. Immaginiamo il paziente coricato supino sotto la curva di pressione e prono sopra la curva di flusso. Vediamo un esempio con le curve di una ventilazione in un paziente completamente passivo (pressione controllata con paralisi muscolare).

Figura 7

Notiamo preliminarmente una cosa. Nel paziente passivo, il flusso inspiratorio può avere un decadimento lineare e non esponenziale (quello espiratorio conserva comunque il decedimento esponenziale). Quindi in presenza di un flusso inspiratorio che va dal picco di flusso al suo termine seguendo una linea retta, potremo considerare il paziente passivo.

Perchè abbiamo messo il paziente in questa strana posizione? Perchè da questa posizione, quando inspira, le curve sono attirate verso la bocca del soggetto sdraiato, mentre quando espira ne sono allontanate. Cioè l’ipotetica attività respiratoria del paziente sdraiato muove le curve con la stessa direzione del flusso di aria che entra ed esce dal proprio apparato respiratorio.

Visualizziamo questo concetto nella figura 8. La figura è un po’ complicata, ma la spiegheremo punto per punto. In bianco sono state sovraimposte alcune possibili modificazioni delle curve dovute all’attività respiratoria del paziente rispetto alle curve passive.

Figura 8

L’inspirazione del paziente durante la fase di flusso espiratorio determina un avvicinamento sia della curva di pressione che di quella di flusso verso la rispettiva linea dello zero (punti 1 e 5 nella figura 8).

L’inspirazione del paziente durante la fase di flusso inspiratorio abbassa la pressione al di sotto dell’onda quadra ed aumenta il flusso rispetto alla fase di decadimento passivo (punti 2 e 6 nella figura 8). In particolare la curva di pressione si “svuota” e la curva di flusso diventa più alta della linea che idealmente congiunge il picco di flusso al flusso presente al momento della fine dell’inspirazione.

L’espirazione del paziente durante la fase di flusso espiratorio allontana pressione e flusso dalla linea dello zero rispetto all’ipotetico andamento passivo (punti 3 e 7 nella figura 8).

L’espirazione del paziente durante la fase di flusso inspiratorio aumenta la pressione delle vie aeree sopra il valore atteso e tende a far decadere rapidamente il flusso inspiratorio (punti 4 e 8 nella figura 8).

Tutto questo NON VA MEMORIZZATO: è sufficiente ricordare il paziente supino sotto la pressione e prono sopra il flusso e ragionare su come sposterebbe le curve l’aria che entra ed esce dalla sua bocca.

Da notare che qualitativamente il flusso inspiratorio è modificato allo stesso modo dall’inspirazione e dall’espirazione del paziente (punti 6 e 8 nella figura 8): in entrambi i casi si osserva una concavità verso il basso della curva di flusso. Come distinguere le due condizioni? Dobbiamo guardare la consensuale variazione di pressione.

Da considerare due presupposti fondamentali:

  • possono essere presenti alterazioni di flusso (rispetto alla passività) in assenza di alterazioni sulla curva di pressione; il flusso è molto sensibile all’attività del paziente, la pressione invece risente anche della performance del ventilatore meccanico: idealmente, se un ventilatore meccanico funzionasse prefettamente non vi sarebbe mai alcuna alterazione della curva di pressione rispetto alla curva passiva;
  • quando sono presenti alterazioni (rispetto alla passività) sia della curve di flusso che di pressione, queste devono essere coerenti tra loro (devono cioè presentarsi nelle accoppiate descritte sopra) per essere attribuibili all’attivitità respiratoria del paziente.

Infine è utile valutare se ci sono fasi di riposo ed equilibrio alla fine del flusso inspiratorio ed alla fine del flusso espiratorio. Queste fasi sono caratterizzate dalla presenza di una pressione stabile ed assenza di flusso, come ad esempio nelle zone ombreggiate della figura 9. Le piccole fluttuazioni della pressione in figura 9 sono ascrivibili al battito cardiaco. Queste zone documentano l’assenza di attività del paziente ed il raggiunto equilibrio pressorio a fine inspirazione (pressione applicata simile a pressione alveolare) ed a fine espirazione (assenza di iperinflazione dinamica).

Figura 9

I: Inspirazione del paziente

Figura 10

Ora applichiamo questi concetti alla nostra paziente, iniziando dalla verifica di eventuale attività inspiratoria.

Analisi durante la fase espiratoria. Nel punto 1 della figura 10 vediamo l’inizio della caduta di pressione durante la fase espiratoria, segno di attività inspiratoria del paziente. Interessante è la traccia di flusso: in questo caso l’avvicinamento al flusso zero non avviene dalla linea espiratoria teorica, ma con una brusco aumento di pendenza dal flusso precedente. In altre parole, prima del punto 1 il flusso espiratorio aveva una certa pendenza, seppur diversa da quella passiva. Di colpo, da questa linea di flusso con una propria pendenza (orizzonatale in questo caso), si verifica un’improvvisa risalita verso lo zero. Anche questo è segno di attività inspiratoria del paziente. Sono coerenti i segni visti su pressione e flusso, quindi sono spiegabili dall’attività inspiratoria del paziente.

Vediamo anche una zona che si ripete all’inizio di ogni fase espiratoria e che abbiamo indicato con un punto interrogativo. Qui ci sono segnali troppo ambigui per essere interpretati. La pressione fluttua sopra e sotto la linea di passività, con associate fluttuazioni del flusso. Tralasciamo in questo già lungo post l’interpretazione di questo punto, che sarà l’argomento del prossimo post.

Analisi durante la fase inspiratoria. Nel punto 2 sono evidenti sia la riduzione della pressione che l’aumento del flusso:  segni coerenti e quindi inequivocabilmente il paziente sta inspirando.

R: Riposo ed equilibrio

E’ evidente dall figura 6 che al confine tra flussi inspiratori ed espiratori non compare nessuna fase di zero flusso associata ad una pressione costante, come nell’esempio in figura 9. Non possiamo quindi in alcun modo fare previsioni sulla pressione alveolare nè a fine inspirazione nè a fine espirazione. Ne consegue che la pressione alveolare potrebbe essere più elevata della pressione di picco e che potrebbe esserci autoPEEP.

E: Espirazione del paziente

Figura 11

Analizziamo infine la presenza di attività espiratoria (figura 11).

Analisi durante la fase espiratoria. E’ evidente che la curva di flusso si allontana dallo zero nel punto 3. Il flusso espiratorio addirittura tende lievemente ad aumentare durante l’espirazione, segno tipico di espirio attivo. A questo si associa ad una pressione lievemente più alta della PEEP impostata. I segni sono coerenti, quindi abbiamo una espirazione attiva. Da considerare che l’analisi del flusso espiratorio può perdere di valore in presenza di flow limitation (vedi post del 04/06/2012).

Analisi durante la fase inspiratoria. Nel punto 4, verso la fine della fase inspiratoria vediamo l’aumento della pressione delle vie aeree oltre il valore teorico dato dalla somma di PEEP e pressione inspiratoria. Questo si associa ad una caduta verticale del flusso inspiratorio. Anhe in questo caso i segni sono coerenti con la presenza di attività espiratoria prima del termine della fase inspiratoria. Possiamo pensare a quest’ultima come al brusco rilasciamento dei muscoli inspiratori e/o all’attivazione dei muscoli espiratori.

Conclusioni.

Applicando il metodo RESPIRE ad un caso molto semplice (giusto per iniziare), possiamo concludere che:

  • la paziente triggera chiaramente gli atti respiratori (attività inspiratoria alla fine della fase espiratoria)
  • continua ad inspirare attivamente per tutta la durata della fase inspiratoria (attività inspiratoria durante la fase inspiratoria)
  • inizia ad espirare già alla fine della fase inspiratoria (attività espiratoria durante la fase inspiratoria)
  • mantiene una espirazione attiva per tutta l’espirazione (attività espiratoria in fase espiratoria)

Abbiamo insomma una paziente sempre (e tanto) attiva durante tutto il ciclo respiratorio, nonostante i numeri (volume corrente, frequenza respiratoria, volume corrente/frequenza respiratoria) ci dicano che va tutto bene. Forse possiamo ventilare meglio la nostra paziente… ma il “che fare” va oltre l’obiettivo di questo post.

Resta da capire, sempre applicando il RESPIRE, cosa siano quelle strane cose che si vedono in figura 10, contrassegnate dal punto interrogativo… Ne parliamo in settembre.

Come sempre, un sorriso a tutti gli amici di ventilab.

Read more ...